1. Consider the axial anomaly in a non-abelian gauge theory, for example QCD with N_{f} massless quark flavors,

$$
\begin{equation*}
J_{A}^{\mu}=\sum_{i, f} \bar{\Psi}_{i f} \gamma^{\mu} \gamma^{5} \Psi^{i f}, \quad \partial_{\mu} J_{A}^{\mu}=-\frac{N_{f} g^{2}}{16 \pi^{2}} \epsilon^{\alpha \beta \mu \nu} \operatorname{tr}\left(F_{\alpha \beta} F_{\mu \nu}\right) \tag{1}
\end{equation*}
$$

where $F_{\mu \nu}$ is the non-abelian gauge field strength.
(a) Expand the right hand side of eq. (1) into 2-gluon, 3-gluon, and 4-gluon terms and show that the 4 -gluon term vanishes identically.

Hint: Use the cyclic symmetry of the trace.
The two-gluon anomaly term obtains from the triangle diagrams

This works exactly as discussed in class for the QED, except in QCD we should trace $F_{\alpha \beta} F_{\gamma \delta}$ over the quarks' colors and flavors. But in QCD there is also the three-gluon anomaly (cf. part (a)) which obtains from the quadrangle diagrams

Since the quadrangle diagrams suffer from linear UV divergences, we need to regulate them, so let's use the Pauli-Villars regulator.
(b) Show that

+ terms which cancel after summing over gluon permutations
(c) Finally, evaluate the the quadrangle diagrams for the Pauli-Villars regulators and derive the three-gluon anomaly in QCD.

2. Next, a reading assignment: $\S 22.2-3$ of Weinberg about the chiral anomaly. Pay particular attention to the Jacobian of the fermion path integral and to regularization of the functional trace.
3. In any even spacetime dimension $d=2 n$, a massless Dirac fermion has an axial symmetry $\Psi(x) \rightarrow \exp (i \theta \Gamma) \Psi(x)$ where Γ generalizes the γ^{5}. Classically, the axial current $J_{A}^{\mu}=$ $\bar{\Psi} \gamma^{\mu} \Gamma \Psi$ is conserved, but when the fermion is coupled to a gauge field - abelian or non-abelian - the axial symmetry is broken by the anomaly and

$$
\begin{equation*}
\partial_{\mu} J_{A}^{\mu}=-\frac{2}{n!}\left(\frac{g}{4 \pi}\right)^{n} \epsilon^{\alpha_{1} \beta_{1} \alpha_{2} \beta_{2} \cdots \alpha_{n} \beta_{n}} \operatorname{tr}\left(F_{\alpha_{1} \beta_{1}} F_{\alpha_{2} \beta_{2}} \cdots F_{\alpha_{n} \beta_{n}}\right) . \tag{5}
\end{equation*}
$$

Generalize Weinberg's calculation of the anomaly via Jacobian of the fermionic path integral to any even spacetime dimension $d=2 n$.

For your information, in $2 n$ Euclidean dimensions $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=+2 \delta^{\mu \nu}, \Gamma=i^{n-2} \gamma^{1} \gamma^{2} \cdots \gamma^{2 n}$, $\left\{\Gamma, \gamma^{\mu}\right\}=0, \Gamma^{2}=+1$, and for any $2 n=d$ matrices $\gamma^{\alpha}, \ldots, \gamma^{\omega}, \operatorname{tr}\left(\Gamma \gamma^{\alpha} \gamma^{\beta} \cdots \gamma^{\omega}\right)=$ $2^{n} i^{2-n} \epsilon^{\alpha \beta \cdots \omega}$.

