
PHY–396 L. Problem set #24. Due May 7, 2021.

1. Let’s start by continuing problem 3 from the previous homework#23. In any even spacetime

dimension d = 2n, the right hand side of the axial anomaly equation

∂µJ
µ
A = − 2

n!

( g

4π

)n
εα1β1α2β2···αnβn tr

(
Fα1β1Fα2β2 · · ·Fαnβn

)
(1)

is always a total derivative,

εα1β1···αnβn tr
(
Fα1β1 · · ·Fαnβn

)
= ∂µΩµ

(2n−1)
(2)

where Ωµ
(2n−1)

is some polynomial in gauge fields Aν and F ρσ. For example

in d = 2, Ωµ
(1)

= 2εµν tr(Aν) [abelian Aν only],

in d = 4, Ωµ
(3)

= 2εµνρσ tr

(
AνFρσ −

2ig

3
AνAρAσ

)
,

in d = 6, Ωµ
(5)

= 2εµνρσαβ tr

(
AνFρσFαβ − igAνAρAσFαβ −

2g2

5
AνAρAσAαAβ

)
,

(3)

etc., etc. The Ωµ
(2n−1)

vectors are equivalent to (2n−1)–index totally antisymmetric tensors

called the Chern–Simons forms, and those forms play many important roles in gauge theory

and string theory. In particular, we may use the Ωµ
(2n−1)

to define a conserved axial current

JµA → JµAC = ΨΓγµΨ +
1

n!

( g

4π

)n
× Ωµ

(2n−1)
. (4)

(Its conservation follows from eqs. (1) and (2).) However, the price of this current conserva-

tion is the loss of gauge invariance: the original axial current JµA is gauge invariant, but the

JµAC is not.

You task is to verify eqs. (2) for d = 2, 4, 6.

2. Next, a reading assignment: §19.3 of Peskin & Schroeder about the chiral symmetry of QCD

and the pions.

For a deeper discussion of pions (and Goldstone bosons in general), please also read chapter

19 of Weinberg.
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3. The pions are pseudo-Goldstone bosons of the spontaneously broken chiral symmetry of

QCD, so they can be created or annihilated by the axial isospin currents

Jaµ5(x) = Ψ(ū, d̄)γµγ5

(
τa

2

)
isospin

Ψ(u, d) = −fπ∂µπa(x) + multi-pion terms. (5)

The fπ in this formula is the pion decay constant because it controls the decay rate of the

charged pions, mostly into muons and neutrinos, π+ → µ+νµ and π− → µ−ν̄µ. In this

exercise, we shall see how this works. Experimentally, fπ ≈ 93 MeV.

The weak interactions at energies O(Mπ)�MW are governed by the Fermi’s current-current

effective Lagrangian

LFermi = −2
√

2GFJ
+α
L J−

Lα (6)

where L±α
L = 1

2(J±α
V −J

±α
A ) are the left-handed charged currents. In terms of the quark and

lepton fields,

J+α
L = 1

2Ψ(νµ)(1− γ5)γαΨ(µ) + cos θc × 1
2Ψ(u)(1− γ5)γαΨ(d) + · · · ,

J−α
L = 1

2Ψ(µ)(1− γ5)γαΨ(νµ) + cos θc × 1
2Ψ(d)(1− γ5)γαΨ(u) + · · · ,

(7)

where the · · · stand for other fermions of the Standard Model, and θc ≈ 13◦ is the Cabibbo

angle.

For the pion decay process, the axial part one of the charged currents annihilates the charged

pion according to eq. (5) while the other charged current creates the lepton pair.

(a) Show that

〈vacuum| Ĵ−α
L

∣∣π+
〉

=
ifπ cos θc√

2
× pα(π+) (8)

and therefore the tree-level pion decay amplitude is

M =
〈
µ+, ν̄µ

∣∣ ˆ̂
LFermi

∣∣π+
〉

= iGffπ cos θc × pα(π+)× ū(νµ)(1− γ5)γαv(µ+). (9)

(b) Sum over the fermion spins and calculate the decay rate Γ(π+ → µ+νµ).
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(c) Experimentally, fπ ≈ 93 MeV, Mπ ≈ 140 MeV, Mµ ≈ 106 MeV, Mν ≈ 0, GF ≈
1.17 · 10−5 GeV−2, and θc ≈ 13◦. Use these data to calculate the charged pion’s lifetime

and compare to the experimental value τ(π±) = 2.6× 10−8 s.

(d) The charged pions decay to muons much more often than they decay to electrons,

Γ(π+ → e+νe)

Γ(π+ → µ+νµ)
=

M2
e

M2
µ

(1− (Me/Mπ)2)2

(1− (Mµ/Mπ)2)2
≈ 1.2 · 10−4. (10)

Derive this formula, then explain this preference for the heavier final-state lepton in

terms of mismatch between lepton’s chirality and helicity.

4. Finally, consider the neutral pion decay into two photons, π0 → γγ. This decay is facilitated

by the QED anomaly of the axial isospin current J3
µ5 = −fπ∂µπ0 + · · ·, cf. eq. (5). As

explained in class,

tr

(
τ3

2
×Q2

el

)
=

e2

2
(11)

hence (
∂µJ3

µ5

)
anomalous

= − e2

32π2
εαβµνFαβFµν , (12)

which may be explained by an effective Lagrangian for the neutral pion field

Leff = 1
2(∂µπ

0)2 +
e2

32π2 fπ
π0 × εαβµνFαβFµν . (13)

In real life, there is additional contribution to the axial current divergence ∂µJ3
µ5 due to

non-zero quark masses; in terms of the effective Lagrangian (13) this extra term can be

accounted by the pions mass2 term, thus

Leff =
1

2
(∂µπ

0)2 − M2
π

2
(π0)2 +

e2

32π2 fπ
π0 × εαβµνFαβFµν . (14)

The interaction term here gives rise to the pion decay amplitude

M(π0 → γγ) = − α

πfπ
× εαβµν(kαe

∗
β)1(kµe

∗
ν)2 . (15)

(a) Derive this amplitude.
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(b) Sum |M|2 over the two photon’s polarizations and calculate the neutral pion’s decay

rate.

(c) Experimentally, Mπ ≈ 135 MeV (for the neutral pion), fπ ≈ 93 MeV, and α ≈ 1/137.

Calculate the numerical value of the neutral pion’s lifetime for these data and compare

to the experimental value of τ(π0) ≈ 8.5× 10−17 s.
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