
Phase Space Factors

Consider a quantum transition from some initial state to a continuum of unbound states.

For example, an excited atom emitting a photon, or an unstable particle decaying into two or

more lighter particles. Another example would be scattering, in which the initial unbound

state of two particles about to collide transitions into another unbound state of particles

moving in different directions. In all such cases, the final states form a continuum, the

transition not to a specific final state but to a continuous family of similar final states.

Fermi’s golden rule gives the rate of such transitions:

Γ
def
=

d probability

d time
=

2πρ

h̄
×
∣∣∣〈final| T̂ |initial〉

∣∣∣2 (1)

where T̂ = Ĥperturbation + higher order corrections, and ρ is the density of final states,

ρ =
dNfinal states

dEfinal
. (2)

Equivalently,

Γ =

∫
dNfinal

∣∣∣〈final| T̂ |initial〉
∣∣∣2 × 2π

h̄
δ(Efinal − Einitial). (3)

For an example, consider an atom in an excited state emitting a photon and dropping

while the atom itself drops to a lower energy state. For a moment, let’s fix the specific initial

and finale state of the atom as well as the photon’s polarization λ. However, the final states

still form a continuous family parametrized by the photon’s momentum pγ . In the large-box

normalization, the number of such final states is

dNfinal =

(
L

2πh̄

)3

d3pγ =
L3

(2πh̄)3
× p2

γ dpγ d
2Ωγ (4)

where d2Ωγ is the infinitesimal solid angle into which the photon is emitted. At the same
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time,

Enet
final − Enet

initial = cpγ + Eatom
final − Eatom

initial = cp − ∆Eatom, (5)

hence

Γ =
1

(2π)2h̄4

∫
d2Ωγ

∫
dpγ p

2
γ × L3

∣∣∣〈atomf + γ
∣∣ T̂ 〈atomi|

∣∣∣2 × δ(cpγ −∆Eatom) (6)

where the L3 factor cancels against the L−3/2 factor in the matrix element due to the photon’s

wave function in the large-box normalization. Integrating over the pγ in eq. (6) removes the

delta-function for the energy, and we are left with

Γ =
(∆Eatom)2

(2π)2h̄4c3

∫
d2Ωγ L

3
∣∣∣〈atomf + γ

∣∣ T̂ 〈atomi|
∣∣∣2 . (7)

Moreover, we may drop the
∫
dΩ integral and get the partial rate of photon emission in a

particular direction,

dΓ

dΩγ
=

(∆Eatom)2

(2π)2h̄4c3
× L3

∣∣∣〈atomf + γ
∣∣ T̂ 〈atomi|

∣∣∣2 . (8)

Alternatively, we may not only integrate over the photon’s direction but also sum over its

polarization as well as some quantum numbers of the atom’s final state — such as mj —

that we are not bothering to measure. This gives us a more inclusive transition rate

Γ =
(∆Eatom)2

(2π)2h̄4c3

∫
d2Ωγ

∑
λ

∑
mj(f)

L3
∣∣∣〈atomf + γ

∣∣ T̂ 〈atomi|
∣∣∣2 . (9)

For another example, consider the decay of an unstable particle into n daughter parti-

cles. Due to momentum conservation, only n − 1 of the daughter particle momenta p′i are

independent, but formally we may integrate over all n of the p′i but include a delta-function

to reimpose the momentum conservation. Thus,

Γ =

∫
L3d3p′1
(2πh̄)3

· · ·
∫
L3d3p′n
(2πh̄)3

∣∣∣〈p′1, . . . ,p′n∣∣ T̂ |pin〉
∣∣∣2 ×

×
(

2πh̄

L

)3

δ(3)(p′1 + ·+ p′n − pin)× 2π

h̄
δ(E′1 + · · ·+ E′n − Ein).

(10)

This formula assumes non-relativistic big-box normalization of quantum states and matrix

elements. In high-energy physics we prefer relativistic normalization in which powers of L
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go away and we also use h̄ = 1 units. On the other hand, the relativistically normalized

particle states have extra factors of
√

2E for each final-state or initial state particle, and

these factors must be compensated by dividing the | 〈matrix element〉 |2 by (2E) for each

initial or final particle. Thus, for a decay of 1 initial particle into n final particles,

Γ =
1

2Ein

∫
d3p′1

(2π)3 2E′1
· · ·
∫

d3p′n
(2π)3 2E′n

∣∣〈p′1, . . . , p′n∣∣M|pin〉
∣∣2×(2π4)δ(4)(p′1+· · ·+p′n−pin),

(11)

where the 4D δ function takes care of both momentum conservation and of the denominator

dEf in the density-of-states factor (2). Likewise, the transition rate for a generic 2 → n

scattering process is given by

Γ =
1

2E1 × 2E2

∫
d3p′1

(2π)3 2E′1
· · ·
∫

d3p′n
(2π)3 2E′n

∣∣〈p′1, . . . , p′n∣∣M|p1, p2〉
∣∣2 ×

× (2π4)δ(4)(p′1 + · · ·+ p′n − p1 − p2).

(12)

In terms of the scattering cross-section σ, the rate (12) is Γ = σ×flux of initial particles. In

the large-box normalization the flux is L−3|v1 − v2|, so in the continuum normalization it’s

simply the relative speed |v1 − v2|. Consequently, the total scattering cross-section is given

by

σtot =
1

4E1E2|v1 − v2|

∫
d3p′1

(2π)3 2E′1
· · ·
∫

d3p′n
(2π)3 2E′n

∣∣〈p′1, . . . , p′n∣∣M|p1, p2〉
∣∣2 ×

× (2π4)δ(4)(p′1 + · · ·+ p′n − p1 − p2).
(13)

In particle physics, all the factors in eqs (11) or (13) besides the matrix elements — as well

as the integrals over such factors — are collectively called the phase space factors.

A note on Lorentz invariance of decay rates or cross-sections. The matrix elements

〈final|M |initial〉 are Lorentz invariant, and so are all the integrals over the final-particles’

momenta and the δ-functions. The only non-invariant factor in the decay-rate formula (11)

is the pre-integral 1/Einit, hence the decay rate of a moving particle is

Γ(moving) = Γ(rest frame)× M

E
(14)

where M/E is precisely the time dilation factor in the moving frame.
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As to the scattering cross-section, it should be invariant under Lorentz boosts along the

initial axis of scattering, thus the same cross-section in any frame where p1 ‖ p2. This

includes the lab frame where one of the two particles is initially at rest, the center-of-mass

frame where p1 +p2 = 0, and any other frame where the two particles collide head-on. And

indeed, in any frame where both p1 and p2 are parallel to the z axis, the pre-integral factor

in eq. (13) for the cross-section becomes

1

4E1E2|v1 − v2|
=

1

4|E1p2 − E2p1|
=

1

4|εµνxypµ1pν2 |
(15)

which is manifestly invariant under the SO+(1, 1) group of Lorentz boosts along the z axis.

Let’s simplify eq. (13) for a 2 particle→ 2 particle scattering process in the center-of-mass

frame where p1 + p2 = 0. In this frame, the pre-integral factor (15) becomes

1

4|p| × (E1 + E2)
(16)

while the remaining phase space factors amount to

Pint =

∫
d3p′1

(2π)3 2E′1

∫
d3p′2

(2π)3 2E′2
(2π)4δ(3)(p′1 + p′2)δ(E′1 + E′2 − Enet)

=

∫
d3p′1

(2π)3 × 2E′1 × 2E′2
(2π)δ(E′1(p′1) + E′2(−p′1)− Enet)

=

∫
d2Ωp′ ×

∞∫
0

dp′
p′2

16π2E′1E
′
2

× δ(E′1 + E′2 − Etot)

=

∫
d2Ωp′

[
p′2

16π2E′1E
′
2

/
d(E′1 + E′2)

dp′

]when

E′
1+E′

2=Etot

.

(17)

On the last 3 lines here E′1 = E′1(p′1) =
√
p′2 +m′21 while E′2 = E′2(p′2 = −p′1) =

√
p′2 +m′22 .

Consequently,

dE′1
dp′

=
p′

E′1
,

dE′2
dp′

=
p′

E′2
, (18)

hence

d(E′1 + E′2)

dp′
=

p′

E′1
+

p′

E′2
=

p′

E′1E
′
2

× (E′2 + E′1 = Etot), (19)
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and therefore

Pint =
1

16π2
× p′

Etot
×
∫
d2Ωp′ . (20)

Including the pre-integral factor (16), we arrive at the net phase space factor

P =
p′

p
× 1

64π2E2
tot

×
∫
d2Ωp′ . (21)

The matrix elementM for the scattering should be put inside the direction-angle integral

in this phase-space formula. Thus, the total scattering cross-section is

σtot(1 + 2→ 1′ + 2′) =
p′

p
× 1

64π2E2
cm
×
∫
d2Ω

∣∣〈p′1 + p′2
∣∣M|p1 + p2〉

∣∣2 , (22)

while the partial cross-section for scattering in a particular direction is

dσ(1 + 2→ 1′ + 2′)

dΩcm
=

p′

p
× 1

64π2E2
cm
×
∣∣〈p′1 + p′2

∣∣M|p1 + p2〉
∣∣2 . (23)

Note: while the total cross-section is the same in all frames where the initial momenta are

collinear, but in the partial cross-section, the dΩ depends on the frame of reference, so

eq. (23) applies only in the center-of mass frame. Also, the Ecm factor in denominators of

both formulae stands for the net energy in the center-of-mass frame. In frame-independent

terms,

E2
cm = (p1 + p2)2 = (p′1 + p′2)2 = s. (24)

Finally, let me write down the phase-space factor for a 2-body decay (1 particle →
2 particles) in the rest frame of the initial particle. The under-the-integral factors for such

a decay are the same as in eq. (20) for a 2 → 2 scattering, but the pre-integral factor is

1/2Minit instead of the (16), thus

P =
p′

32π2M2
, (25)

meaning

dΓ(0→ 1′ + 2′)

dΩ
=

p′

32π2M2
×
∣∣〈p′1 + p′2

∣∣M|p0〉
∣∣2 , (26)

Γ(0→ 1′ + 2′) =
p′

32π2M2
×
∫
d2Ω

∣∣〈p′1 + p′2
∣∣M|p0〉

∣∣2 . (27)
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