
QED: Feynman Rules, Divergences, and Renormalizability

QED Feynman Rules in the Counterterm Perturbation Theory

The simplest version of Quantum Electrodynamics (QED) has only 2 field types — the

electromagnetic field Aµ and the electron field Ψ — and its physical Lagrangian is

Lphys = −1
4FµνF

µν + Ψ(iγµDµ −me)Ψ = −1
4F

2
µν + Ψ(i 6∂ −m)Ψ + eAµΨγµΨ. (1)

The bare Lagrangian of the perturbation theory has a similar form, except for the bare

coupling ebare instead of the physical coupling e, the bare electron mass mbare instead of

the physical mass m, and the bare fields Aµ
bare(x) and Ψbare(x) instead of the renormalized

fields Aµ(x) and Ψ(x). By convention, the fields strength2 factors Z for the EM and the

electron fields are called respectively the Z3 and the Z2, while the Z1 is the electric charge

renormalization factor. Thus,

Aµ
bare(x) =

√

Z3 × Aµ(x), Ψbare(x) =
√

Z2 ×Ψ(x), (2)

and plugging these bare fields into the bare Lagrangian we obtain

Lbare = −
Z3

4
FµνF

µν + Z2Ψ(i 6∂ −mbare)Ψ + Z1e×AµΨγµΨ (3)

where

Z1 × e = Z2

√

Z3 × ebare (4)

by definition of the Z1.

As usual in the counterterm perturbation theory, we split

Lbare = Lphys + Lcounter
terms (5)

where the physical Lagrangian Lphys is exactly as in eq. (1) while the counterterms comprise
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the difference. Specifically,

Lcounter
terms = −

δ3
4
× FµνF

µν + δ2 ×Ψi 6∂Ψ − δm ×ΨΨ + eδ1 × AµΨγµΨ (6)

for

δ3 = Z3 − 1, δ2 = Z2 − 1, δ1 = Z1 − 1, δm = Z2mbare − mphys . (7)

Actually, the bare Lagrangian (5) is not the whole story, since in the quantum theory

the EM field Aµ(x) needs to be gauge-fixed. The most commonly used Feynman gauge (or

similar Lorentz-invariant gauges) stem from the gauge-averaging of the functional integral.

We shall learn how this works in April — for the impatient, here are my notes, — but for

the moment all we need is the net effect of this procedure amounting to adding an extra

gauge-symmetry breaking term to the Lagrangian,

Lbare = Lphys + Lgauge
fixing + Lcounter

terms (8)

for

Lgauge
fixing = −

1

2ξ
(∂µA

µ)2 (9)

where ξ is a constant parametrizing a specific gauge. In the Feynman gauge ξ = 1.

In the counterterm perturbation theory, we take the free Lagrangian to be the quadratic

part of the physical Lagrangian plus the gauge fixing term, thus

Lfree = Ψ(i 6∂ −m)Ψ − 1
4F

2
µν −

1

2ξ
(∂µA

µ)2 (10)

(where m is the physical mass of the electron), while all the other terms in the bare La-

grangian — the physical coupling eAµΨγµΨ and all the counterterms (6) — are treated as

perturbations. Consequently, the QED Feynman rules have the following propagators and

vertices:
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• The electron propagator

α β

p
=

[

i

6p−m+ i0

]

αβ

=
i(6p+m)αβ
p2 −m2 + i0

(11)

where α and β are the Dirac indices, usually not written down.

• The photon propagator

µ ν

k
=

−i

k2 + i0
×

(

gµν + (ξ − 1)
kµkν

k2 + i0

)

. (12)

In the Feynman gauge ξ = 1 this propagator simplifies to

µ ν

k
=

−igµν

k2 + i0
. (13)

• The physical vertex

α

β

µ
=
(

+ieγµ
)

αβ
. (14)

⋆ And then there are three kinds of counterterm vertices:

α

β

µ
= +ieδ1 × (γµ)αβ , (15)

α β
= +i

(

δ2×6p − δm
)

αβ
, (16)

µ ν
= −iδ3 ×

(

gµνk2 − kµkν
)

. (17)
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Renormalizability (I):

Power Counting, Divergences, and Counterterms

The only physical coupling of QED is e, which is dimensionless in 4D; its numeric value

is e ≈ 0.302 822 120 872. Consequently, by dimensional analysis — also called the power-

counting analysis — QED should be a renormalizable theory. That is, it has infinite number

of UV-divergent Feynman diagrams but only a finite number of UV-divergent amplitudes,

and all such divergences can be canceled in situ by a finite set of counterterms. (Although

the counterterm couplings δwhatever should be adjusted order-by-order at all orders of the

perturbation theory.)

However, by the power-counting analysis, canceling all the divergences seems to require

a few more counterterms than QED actually has. Such missing counterterms raise a ques-

tion of whether QED — with the Feynman rules exactly as in the previous section — is

actually a renormalizable theory. And in the next section we shall learn that QED is indeed

renormalizable thanks to the Ward–Takahashi identities which make the missing countert-

erms unneeded. But before we go there, we need to work out the power-counting analysis of

WED divergences, and that’s what this section is about.

In QED, like in any 4D theory with dimensionless coupling(s), the superficial degree of

divergence of any 1PI Feynman graph follows from the numbers of its external legs as

D = 4 − 3
2Ef − Eb −−→

QED
4 − 3

2Ee − Eγ . (18)

(See my notes on dimensional analysis for explanation.) Consequently, all the superficially

divergent Feynman graphs — that is, the graphs suffering from the overall UV divergence

when all qµj → ∞ rather than from a subgraph divergence — must have 3
2Ee + Eγ ≤ 4,

which means either (Ee = 0 and Eγ ≤ 4) or (Ee = 2 and Eγ ≤ 1). So let’s take a closer look

at such superficially divergent graphs and at the amplitudes to which they contribute:

• Ee = 0 and Eγ = 0,

is a vacuum bubble. (19)

Since such bubbles affect nothing but the vacuum energy of the theory, we shall ignore

them from now on.
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• Ee = 0 and Eγ = 1,

µ
is a photon tadpole. (20)

All such tadpole diagrams vanish by the Lorentz symmetry acting on the µ index of a

zero-momentum photon.

• Ee = 0 and Eγ = 2,

µ ν
contributes to iΣγ

µν(k). (21)

• Ee = 0 and Eγ = 3,

λ

µ

ν (22)

While individual 3–photon diagrams like this do not vanish, they form pairs which

precisely cancel each other, so the net 3-photon amplitude vanishes. This is Furry’s

theorem, which stems from the charge conjugation symmetry C of QED. Indeed, C

acts on the EM field Aµ(x) by flipping its sign, Aµ(x) → −Aµ(x), hence any amplitude

involving an odd number of photons — and no electrons — must vanish.

• Ee = 0 and Eγ = 4,

λ

µ

κ

ν

(23)

contributes to the 4-photon amplitude iVκλµν(k1, k2, k3, k4).
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• Ee = 2 and Eγ = 0,

α β
contributes to − iΣe

αβ(p) (24)

where α and β are the Dirac indices, usually not written down. By Lorentz+parity

symmetry of this amplitude,

Σe
αβ(p

µ) = A(p2)× δαβ + B(p2)× pµγ
µ
αβ (25)

for some scalar functions A and B of p2, or suppressing the Dirac indices

Σe(pµ) = A(p2) + B(p2)×6p. (26)

Moreover, expanding A(p2) and B(p2) into power series in p2 and making use of p2 =

(6 p)2, we can turn the RHS of this formula into a power series in 6 p, where the even

powers of 6 p come from A(p2) and the odd powers from B(p2)× 6 p. Consequently, the

1PI 2-point function for the electron field is usually written down as Σe(6p).

• Ee = 2 and Eγ = 1,

(k, µ)

(p′, α) (p, β)

(k = p′ − p)

(27)

contributes to the “dressed” electron-photon vertex ieΓµ
αβ(p

′, p). We shall address the

Lorentz symmetry properties of this vertex later in class.

⋆ And this is it! QED has no other kinds of superficially-divergent amplitudes.
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Now let’s take a closer look at the non-trivial superficially-divergent amplitudes Γµ(p′, p),

Σe(6p), Vκλµν(k1, . . . , k4), and Σγ
µν(k) and focus on their infinite parts.

1. Let’s start with the dressed electron-photon vertex ieΓµ
αβ(p

′, p). Loop diagrams con-

tributing to this dressed vertex have superficial degree of divergence

D[Γµ] = 4 − 3
2(Ee = 2) − (Eγ = 1) = 0, (28)

so they suffer from a logarithmic UV divergence. The derivatives of the dressed vertex

with respect to the electron’s or photon’s momenta

∂Γµ

∂pν
,
∂Γµ

∂p′ν
,
∂Γµ

∂kν
, have D = D[Γµ] − 1 = −1, (29)

which makes them UV-finite. Consequently, the UV-infinite part of the dressed vertex

must be a momentum-independent constant, or rather a constant array indexed by µ

and Dirac indices α, β. By Lorentz symmetry, such constant array must be proportional

to the Dirac’s γµαβ, hence

Γµ
αβ(p

′, p) = [O(log Λ) constant]× γµαβ + finite(p′, p). (30)

Moreover, in the counterterm perturbation theory

Γµ
net(p

′, p) =
(

Γµ
tree = γµ

)

+ Γµ
loops + δ1 × γµ, (31)

so the UV divergences (30) of the diagrams contributing to the dressed vertex can be

canceled by suitable value of the counterterm coupling δ1.

2. Next, consider the electron’s 2-point 1PI amplitude −iΣe(6 p). Loop diagrams con-

tributing to this amplitude have superficial degree of divergence

D(Σe) = 4 − 3
2(Ee = 2) − (Eγ = 0) = +1, (32)

so they diverge as O(Λ). But taking the derivatives of Σe with respect to the electron’s
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momentum 6p reduces the superficial degree of divergence,

D[dΣ2/d 6p] = D[Σe] − 1 = 0, D[d2Σ2/(d 6p)2] = D[Σe] − 2 = −1, . . . (33)

so the first derivative diverges as O(log Λ) while the second and higher derivatives are

UV-finite. Consequently, the infinite part of Σe(6p) must be a linear function of 6p, thus

Σe = [O(Λ) constant] + [O(log Λ) constant]×6p + finite(6p). (34)

Moreover, in the counterterm perturbation theory

Σe
net(6p) = Σe

loops(6p) + δm − δ2×6p, (35)

so the UV divergences (34) of the diagrams contributing to the electron’s 2-point 1PI

amplitude can be canceled by suitable values of the counterterm couplings δm and δ2.

3. Now we turn from the good news to the bad news. Consider the 4-photon 1PI ampli-

tude Vκλµν(k1, k2, k3, k4). The superficial degree of divergence of diagrams contributing

to this amplitude is

D[V] = 4 − 3
2(Ee = 0) − (Eγ = 4) = 0, (36)

while derivatives WRT the photon’s momenta have

D[∂V/∂kµi ] = D[V] − 1 = −1. (37)

Hence, the diagrams themselves diverge as O(log Λ) but their derivatives are finite, so

the divergence of V is a momentum-independent constant. Or rather, it’s a constant

tensor with 4 Lorentz indices (κ.λ, µ, ν). By the Lorenz symmetry — and by the Bose

symmetry of the 4 photons — this k-independent tensor must be proportional to

gκλgµν + gκµgλν + gκνgλµ , (38)

thus

Vκλµν(k1, k2, k3, k4) = [O(log Λ) constant]×
(

gκλgµν + gκµgλν + gκνgλµ
)

+ finiteκλµν(k1, . . . , k4).
(39)

Naively, in the counterterm perturbation theory this divergence should be canceled by
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the counterterm vertex

λ

µ

κ

ν

= iδ4γ ×
(

gκλgµν + gκµgλν + gκνgλµ
)

(40)

stemming from the counterterm

Lcounter
terms ⊃

δ4γ
8

×
(

AµAµ

)2
. (41)

However, QED Lagrangian does not have this counterterm! Worse, such a counterterm

would break the gauge symmetry of QED, so we cannot possibly add it to the bare

QED Lagrangian without destroying the basic structure of the abelian gauge theory.

4. Finally, more bad news from the photon’s 2-point 1PI amplitude Σγ
µν(k). The diagrams

contributing to this amplitude have superficial degree of divergence

D[Σγ
µν ] = 4 − 3

2(Ee = 0) − (Eγ = 2) = +2, (42)

so it’s derivatives WRT the photon’s momentum kλ have

D[∂Σγ
µν/∂k

λ] = D[Σγ
µν ] − 1 = +1,

D[∂2Σγ
µν/∂k

κ ∂kλ] = D[Σγ
µν ] − 2 = 0,

D[∂3Σγ
µν/∂k

κ ∂kλ ∂kρ] = D[Σγ
µν ] − 3 = −1,

(43)

etc., etc. Thus, the amplitude Σγ
µν(k) diverges as O(Λ2), it’s first derivative as O(Λ),

the second derivative as O(log Λ), but the third and the higher derivatives are finite.

Consequently, the divergent part of the Σγ
µν(k) must be a quadratic polynomial of the

photon’s momentum k. Furthermore, by Lorentz symmetry such quadratic polynomial
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must gave form

A× gµν + B × k2 × gµν + C × kµkν (44)

for some O(Λ2) constant A and O(log Λ) constants B and C, thus

Σγ
µν(k) = A× gµν + B × k2 × gµν + C × kµkν + finiteµν(k). (45)

Naively, in the counterterm perturbation theory these divergences should be canceled

by the counterterm vertex

µ ν
= −iδ3A × k2gµν + iδ3B × kµkν − iδmγ × gµν (46)

stemming from the counterterms

Lcounter
terms ⊃ = −

δ3A
2

× (∂µAν)(∂
µAν) +

δ3B
2

× (∂νA
ν)2 +

δmγ

2
× AνA

ν (47)

with suitably adjusted couplings δ3A, δ3B , and δMγ . However, QED does not have the

photon’s mass2 counterterm δmγAµA
µ, while the photon’s kinetic counterterms come

only in a fixed combination −1
4δ3 × FµνF

µν which corresponds to δ3A = δ3B = δ3.

Thus, QED has only one two-photon counterterm instead of 3 counterterms needed

to cancels all the apparent divergences (45) of the Σγ
µν(k) amplitude. Worse, the

missing counterterms are not gauge invariant, so we cannot add them to the bare

QED Lagrangian without breaking the gauge symmetry of the theory.

The bottom line is: QED has a finite number of divergent amplitudes which can be can-

celed by a finite number of counterterms with order-by-order-adjusted coefficients. However,

the gauge symmetry of QED forbids some of these counterterms, which questions QED’s

renormalizability.
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Renormalizability (II):

Missing Counterterms and Ward–Takahashi Identities

In the previous section we saw that QED lacks some of the counterterms it seems to need

for the UV divergence cancellation, namely the photon mass2 counterterm δmγ , the 4-photon

counterterm δ4γ ¡ and the separate photon kinetic counterterms δ3A and δ3B. Nevertheless,

QED is a renormalizable theory because the divergences the missing counterterms are sup-

posed to cancel actually cancel themselves. That is, the UV divergences of the loop diagrams

contributing to the 2-photon and 4-photon amplitudes cancel each other order-by-order in

perturbation theory!

The keys to this cancellation are the Ward–Takahashi identities, which we shall study in

painful detail later in class. (For the impatient, here are my notes on the subject.) There is

a whole series of Ward–Takahashi identities, but for the moment we need only the identities

for the purely photonic amplitudes

µ1

µ2

µ3

µ4µ5

µ6

µ7

= iMµ1,µ2,...,µn(k1, . . . , kn). (48)

The n external photonic lines here could be truly external corresponding to the incoming

or outgoing photos, or they could be propagators in a bigger Feynman graph. We allow for

both possibilities, so the photon momenta k1, . . . , kn can be on-shell or off-shell. Also, the

amplitude M···(k1, . . . , kn) does not include the polarization vectors for the truly external

photons or propagator factors for the photonic lines connected to other parts of a bigger

graph. However, inside the cross-hatched disk we should total up all the diagrams with

appropriate external legs up to some order in the QED coupling e. Remember: only the
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complete amplitudes should obey the Ward–Takahashi identities, but the individual Feynman

diagrams generally don’t. Anyhow, the WT identity for an n-photon amplitude (48) says

that when we contract the Lorentz index µi of any photon with the momentum vector (ki)µi

of the same photon, we must get zero,

∀i = 1, . . . , n : (ki)µi
×Mµ1,µ2,...,µn(k1, . . . , kn) = 0. (49)

Now let’s apply this identity to the 4-photon amplitude

Vκλµν(k1, k2, k3, k4) = C ×
(

gκλgµν + gκµgλν + gκνgλµ
)

+ finiteκλµν(k1, . . . , k4) (39)

where C is a UV-divergent O(log Λ) constant. By the Ward–Takahashi identity kκ1 × Vκλµν

must vanish, thus

0 = kκ1 × Vκλµν(k1, k2, k3, k4)

= C ×
(

(k1)λgµν + (k1)µgλν + (k1)νgλµ
)

+ kκ1 × finiteκλµν(k1, . . . , k4).
(50)

Moreover, since the finite term here cannot possibly cancel the UV-divergent term, the

divergent term must vanish all by itself, thus C = 0. In other words, the Ward–Takahashi

identity for the 4-photon amplitude does not allow for its ultraviolet divergence. While

individual Feynman diagrams for the 4-photon amplitude may suffer from a logarithmic UV

divergence, once we total up all such diagrams at any given loop order, the net UV divergence

must cancel out! And that’s why QED does not need the 4-photon counterterm δ4γ in order

to keep the net 4-photon amplitude finite.

Next, consider the 2-photon amplitude Σγ
µν(k). By Lorentz symmetry, a two-index-tensor

valued function of a single vector kλ must have form

Σγ
µν(k) = Ξ(k2)× gµν − Π(k2)× kµkν (51)

for some scalar functions Ξ and Π of k2. The WT identities for this 2-photon amplitude read

0 = kµ × Σγ
µν = Ξ(k2)× kν − Π(k2)× k2kν ,

0 = kν × Σγ
µν = Ξ(k2)× kµ − Π(k2)× k2kµ ,

(52)
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hence

Ξ(k2) = Π(k2)× k2 (53)

and therefore

Σγ
µν(k) = Π(k2)×

(

k2gµν − kµkν
)

. (54)

Note: this identity applies to both finite and infinite parts of the 2-photon amplitude.

In the previous section, we saw that the UV-divergent part of the 2-photon amplitude

has form

[

Σγ
µν(k)

]

divergent
= A× gµν + B × k2 × gµν + C × kµkν (45)

for some O(Λ2) constant A and O(logΛ) constants B and C. Applying the WT identity to

this divergent part of the amplitude, we get

0 = kµ ×
[

Σγ
µν(k)

]

divergent
= A× kν + B × k2kν + C × k2kν , (55)

hence A = 0, C = −B, and therefore

[

Σγ
µν(k)

]

divergent
= B ×

(

k2gµν − kµkν
)

. (56)

In other words, the divergent part of the 2-photon amplitude must respect eq. (54).

Altogether, we have

Σγ
µν(k) = Π(k2)×

(

k2gµν − kµkν
)

(54)

for Π(k2) = [O(log Λ) constant] + finite(k2). (57)

Note that while individual diagrams contributing to the two-photon amplitude may suffer

from quadratic UV divergences, those leading divergences must cancel out from the net

amplitude once we total up the diagrams. Only the sub-leading logarithmic divergence may

survive this cancellation, and it must have a rather restrictive form (54)+(57).
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To cancel this remaining divergence, we do not need the photon mass2 counterterm δmγ ,

or separate photon kinetic counterterms δ3A and δ3B , or any other counterterm missing from

QED by reasons of gauge symmetry. Instead, all we need is the δ3 counterterm which does

exist in QED. Indeed,

[

Σγ
µν(k)

]net
=
[

Σγ
µν(k)

]loops
− δ3 × (k2gµν − kµkν), (58)

which agrees with eq. (54) for the net amplitude and makes for

[

Σγ
µν(k)

]net
= Πnet(k2)×

(

k2gµν − kµkν
)

for Πnet(k2) = Πloops(k2) − δ3 .
(59)

Consequently, the UV-divergent constant term in eq. (57) for the Πloops(k2) can be canceled

by a suitably adjusted δ3 counterterms order-by-order in perturbation theory.

So here is the bottom line of this section: Thanks to the Ward–Takahashi identities,

QED does not need the missing counterterms to cancel all of its UV divergences; all it needs

are the counterterms δ1, δ2, δm, and δ3 that the theory does have. And that’s what makes

QED a renormalizable theory.

Dressed Propagators and Finite Parts of Counterterms

The infinite parts of QED counterterms δ1, δ2, δ3, and δm follow from the requirement

that they cancel the UV divergences of the loop graphs. The finite parts of the counterterms

follow from the more subtle renormalization conditions, namely: m in the electron propaga-

tors is the physical electron mass, −e is the physical electron charge, and Ψ̂(x) and Âµ(x) are

the renormalized quantum fields which create the physical electrons and photons from the

vacuum with strength = 1. Diagrammatically, the δ2 and δm counterterms are related to the

electron’s dressed propagator — i.e., 2-point correlation function, — the δ3 counterterm is

related to the photon’s dressed propagators, and the δ1 counterterm is related to the dressed

electron-photon vertex. In this section, I shall address the dressed propagators; the dressed

vertex and the δ1 counterterm will be addressed in separate sets of notes (here and here).
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Let’s start with the electron’s dressed propagators AKA Fourier transform of the 2-point

correlation function

= Fe
2(p) =

∫

d4(x− y) eip(x−y)Fe
2 (x− y). (60)

Diagrammatically, in terms of the 2-electron 1PI amplitude Σe(6p),

= +

+ + · · ·

(61)

which translates to

Fe
2(p) =

i

6p−m+ i0
+

i

6p−m+ i0
(−iΣe(6p))

i

6p−m+ i0

+
i

6p−m+ i0
(−iΣe(6p))

i

6p−m+ i0
(−iΣe(6p))

i

6p−m+ i0
+ · · · .

(62)

Note that every propagator or Σe(6 p) factor in this formula is a 4 × 4 matrix in Dirac

indices, and their products are matrix products in the order they are written down in eq. (62)

Fortunately, the 1PI amplitude Σe(6p) is a power series in 6p, so as a matrix it commutes with

6p and every function of 6p such as the free propagator i/(6p−m+ i0). This allows us to take

products in eq. (62) in any order, thus an N–bubble term amounts to

(

i

6p−m+ i0

)N+1

× (−iΣe(6p))N =
i

6p−m+ i0
×

(

Σe(6p)

6p−m+ i0

)N

(63)

and hence

Fe
2(p) =

∞
∑

N=1

i

6p−m+ i0
×

(

Σe(6p)

6p−m+ i0

)N

=
i

6p−m+ i0
×

[

1 −
Σe(6p)

6p−m+ i0

]−1

=
i

6p−m− Σe(6p) + i0
.

(64)

15



Now consider the poles of the electron propagator. The free Dirac propagator

i

6p−m+ i0
=

i(6p +m)

p2 −m2 + i0
(65)

has a pole at p2 = m2 with the residue (6p+m) = 2m× (projection matrix onto the positive

eigenvalue +m of the Dirac matrix 6 p). In other words, this is a pole at (eigenvalue of

6p) = +m with residue = 1, or less formally, a pole at 6p = +m with unit residue. And that’s

the general behavior of the Dirac fields’ propagators.

In particular, the dressed propagator for the electron field should have a pole at 6 p =

physical electron mass with the residue being the electron field strength factor. In the

counterterm perturbation theory, the mass m in the free electron propagator should be

equal to the electron’s physical mass, so the dressed propagator should have a pole at the

same point 6 p = m as the free propagator. Likewise, this pole should have a unit residue

since the renormalized electron field should create physical electrons with strength = 1, thus

Fe
2 (p) =

i

6p−m+ i0
+ smooth@(6p = m). (66)

In terms of the denominator of

Fe
2(p) =

i

6p−m− Σe(6p) + i0
(64)

this means

for 6p nearm : 6p−m−Σe(6p) = 0 + 1×(6p−m) + O
(

(6p−m)2
)

=⇒ Σe(6p) = O
(

(6p−m)2
)

(67)

and therefore

@(6p = m) both Σe = 0 and
dΣe

d 6p
= 0. (68)

The first condition here (Σe(6p = m) = 0) is needed to keep the dressed propagator’s pole at

the same point 6 p = m as in the free propagator, while the second consition (dΣe/d 6 p = 0)

provides for the unit residue of that pole.
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To be precise, the 1PI 2-electron amplitude in all the above formulae is the net amplitude

comprising both the loop diagrams and the counterterms,

Σe
net(6p) = Σe

loops + δm − δ2×6p. (69)

Thus, it’s the net 1PI amplitude and its derivative which must vanish at 6p = m, which gives

us two equations for the counterterms:

Σe
loops@(6p = m) + δm − δ2 ×m = 0 and

dΣe
loops

d 6p
@(6p = m) − δ2 = 0. (70)

These two equations completely determine the counterterms δ2 and δm, including their finite

parts.

⋆ ⋆ ⋆

Finally, consider the photon’s dressed propagator, i.e.the Fourier transform of the pho-

ton’s 2-point correlation function

µ ν
= Fµν

2γ (k) =

∫

d4(x− y) eik(x−y)Fµν
2γ (x− y). (71)

Diagrammatically, in terms of the 2-photon 1PI amplitude Σγ
µν(k),

= +

+ + · · ·

(72)

Note that every propagator and every 1PI bubble here bears two Lorentz indices, so multi-

plying them together involves a lot of index contractions. To simplify the algebra, let’s treat

the free propagators and the 1PI bubbles as 4 × 4 matrices and multiply them as matrices.
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For consistency we raise the first Lorenz index of any such matrix and lower the second

index, thus

propµν =
µ

ν
=

−i

k2 + i0

[

δµν + (ξ − 1)
kµkν
k2 + i0

]

(73)

and

[iΣγ(k)]µν =
µ

ν
= iΠ(k2)×

(

k2δµν − kµkν
)

. (74)

In these matrix notations, the series (72) amounts to

‖F2γ‖ = prop + prop× (iΣγ)×prop + prop× (iΣγ)×prop× (iΣγ)×prop + · · · . (75)

To evaluate the matrix products here, let’s introduce the projector matrices

[P‖(k)]
µ
ν =

kµkν
k2 + i0

(76)

which projects 4-vectors onto their components parallel to the kµ, and

[P⊥(k)]
µ
ν = δµν −

kµkν
k2 + i0

(77)

which projects 4-vectors onto their components perpendicular to the kµ. These two matrices

are complementary projectors, which obey

P‖P‖ = P‖ , P⊥P⊥ = P⊥ , P‖P⊥ = P⊥P‖ = 0, P⊥ + P‖ = 1. (78)

In terms of these projector matrices, the free photon propagator matrix is

prop =
−i

k2 + i0
×
(

P⊥ + ξP‖

)

(79)

while the 1PI 2-photon bubble is

iΣγ(k) = iΠ(k2)× k2P⊥ . (80)

Note that the free propagator and the 1PI bubble commute with each other as matrices, so
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the N -bubble term in the series (72) amounts to

N th term = (prop)N+1 × (iΣγ)N

=

(

−i

k2 + i0

)N+1
(

P⊥ + ξP‖)
N+1 ×

(

ik2Π(k2
)N(

P⊥)
N

=
−i

k2 + i0
×
(

Π(k2)
)N

×
(

P⊥ + ξN+1P‖

)

×

{

P⊥ for N > 0,

1 for N = 0,

=
−i

k2 + i0
×
(

Π(k2)
)N

×

{

P⊥ for N > 0,

P⊥ + ξP‖ for N = 0.

(81)

Consequently, we may sum the whole series (72) as

‖F2γ‖ =
∞
∑

N=0

−i

k2 + i0
×
(

Π(k2)
)N

×
(

P⊥ + ξδN,0P‖

)

=
−i

k2 + i0
×

(

P⊥ ×
∞
∑

N=0

(

Π(k2)
)N

+ ξP‖

)

=
−i

k2 + i0
×

(

P⊥

1−Π(k2)
+ ξP‖

)

=
−i

k2 + i0
×

1

1−Π(k2)
×
(

P⊥ + ξ̃P‖

)

(82)

where ξ̃ = ξ × (1− Π(k2)) is the quantum-corrected gauge fixing parameter.

Note that thanks to the Ward–Takahashi identity leading to Σγ = Π × k2 × P⊥, the

dressed photon propagator (82) automagically has a pole at k2 = 0 (cf. the first factor on

the bottom line of eq. (82)), the same place as the free photon propagator. In other words,

the photon remains exactly massless, and we do not need extra counterterms to prevent the

loop corrections from giving it a non-zero mass2.

On the other hand, the residue of the pole at k2 = 0 stems from the second factor on

the bottom line of eq. (82),

Residue =
1

1− Π(k2 = 0)
. (83)

Thus, to make sure the renormalized EM field Âµ(x) creates photons with strength = 1, we
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need Π(k2) to vanish at k2 = 0. Or rather,

Πnet(k2) = Πloops(k2) − δ3 −→ 0 for k2 = 0, (84)

and this is the equation which determines the finite part of the δ3 counterterm. We shall see

how this works at the one-loop level in the next set of my notes.
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