PHY-396 K/L. Solutions for homework set \#17 (problem 1).

Problem 1 - the textbook problem 10.2(b):
The previous homework set \#16 included part (a) of the textbook problem 10.2. In the solutions to that part, I showed that the Yukawa theory needs 6 counterterms $\delta_{m}^{\phi}, \delta_{Z}^{\phi}, \delta_{m}^{\psi}, \delta_{Z}^{\psi}, \delta_{g}$, and $\delta_{\lambda}$, which lead to four counterterm vertices:

$$
\begin{align*}
& \cdots \cdots \cdots=-i \delta_{m}^{\phi}+i p^{2} \delta_{Z}^{\phi}, \\
& \ddots \ddots \cdot .^{\cdot}=-i \delta_{\lambda},  \tag{S.1}\\
& . \cdot \\
& \rightarrow 0 \rightarrow=-i \delta_{m}^{\psi}+i \not p \delta_{Z}^{\psi}, \\
& \rightarrow 0 \cdots=-\delta_{g} \gamma^{5}
\end{align*}
$$

(For details, see the solutions to the previous homework, set\#16.) In this part (b) we shall calculate the infinite parts of all the counterterms.

Let's start with the $\delta_{\lambda}$ counterterm which cancels the divergence of the four-scalar 1PI amplitude $\mathcal{V}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$. At the one-loop level of analysis, we have the following Feynman diagrams:


The similar diagrams here are related by non-trivial permutations of the external legs. For the scalar loops, non-trivial means different pairing of the external legs at the vertices (modulo vertex
permutations), hence 3 distinct diagrams, while for the fermionic loops non-trivial means different cyclic order of the 4 legs, hence 6 distinct diagrams.

Since we have done the scalar loops in class, let's focus on the fermionic loop at the bottom line of (S.2). Each such loop yields

$$
\begin{equation*}
-\int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \operatorname{Tr}\left\{\left(-g \gamma^{5}\right) \frac{i}{\not p_{1}-M+i 0}\left(-g \gamma^{5}\right) \frac{i}{\not p_{2}-M+i 0}\left(-g \gamma^{5}\right) \frac{i}{\not p_{3}-M+i 0}\left(-g \gamma^{5}\right) \frac{i}{\not p_{4}-M+i 0}\right\} \tag{S.3}
\end{equation*}
$$

where

$$
p_{2}=p_{1}+k_{1}, \quad p_{3}=p_{2}+k_{2}, \quad p_{4}=p_{3}+k_{3}, \quad \text { and } \quad p_{1}=p_{4}+k_{4}
$$

For generic values of the external momenta $k_{1}, \ldots, k_{4}$, the integral (S.3) is quite complicated, but its divergence is $k$-independent and hence may be evaluated for any particular choice of $k_{i}$ we find convenient. Clearly, the simplest set of the $k_{i}$ is $k_{1}=k_{2}=k_{3}=k_{4}=0$; this is off-shell, but that's OK. Consequently, the integral (S.3) becomes

$$
\begin{align*}
i \mathcal{V}^{\psi \text { loop }}(0,0,0,0) & =-\int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \operatorname{tr}\left[\left(\left(-g \gamma^{5}\right) \frac{i}{\not p-M+i 0}\right)^{4}\right] \\
& =-g^{4} \int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \frac{\operatorname{tr}\left[\left(\gamma^{5}(\not p+M)\right)^{4}\right]}{\left(p^{2}-M^{2}+i 0\right)^{4}}  \tag{S.4}\\
& =-g^{4} \int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \frac{4}{\left(p^{2}-M^{2}+i 0\right)^{2}}
\end{align*}
$$

where the last equality follows from

$$
\begin{equation*}
\left(\gamma^{5}(\not p+M)\right)^{2}=\gamma^{5}(\not p+M) \gamma^{5}(\not p+M)=(-\not p+M)(\not p+M)=-p^{2}+M^{2} \tag{S.5}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\operatorname{tr}\left[\left(\gamma^{5}(\not p+M)\right)^{4}\right]=4\left(p^{2}-M^{2}\right)^{2} \tag{S.6}
\end{equation*}
$$

Evaluating the integral on the last line of eq. (S.4) using dimensional regularization, we obtain

$$
\begin{equation*}
\mathcal{V}_{\psi \text { loop }}\left(k_{1}=k_{2}=k_{3}=k_{4}=0\right)=\frac{-4 g^{4}}{16 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}}\right) \tag{S.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{\bar{\epsilon}} \stackrel{\text { def }}{=} \frac{1}{\epsilon}-\gamma_{E}+\log (4 \pi) . \tag{S.8}
\end{equation*}
$$

This notation is common in dimensional regularization: because the $1 / \epsilon$ divergence is usually accompanied by the finite $-\gamma_{E}+\log (4 \pi)$ constant, it's convenient to combine them into a single term denoted $1 / \bar{\epsilon}$.

It remains to multiply the amplitude (S.7) by 6 (for six similar diagrams) and add contributions of the other diagrams (S.2). The latter diagrams have been evaluated in class in the context of the scalar $\lambda \Phi^{4}$ theory, thus to order $O\left(\lambda^{2}\right.$ or $\left.g^{4}\right)$,

$$
\begin{equation*}
\mathcal{V}\left(k_{1}=k_{2}=k_{3}=k_{4}=0\right)=-\lambda-\delta_{\lambda}+\frac{3 \lambda^{2}}{32 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{m^{2}}\right)-\frac{24 g^{4}}{16 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}}\right) \tag{S.9}
\end{equation*}
$$

The renormalization condition for the physical $\lambda$ coupling is the on-shell four-particle amplitude $\mathcal{M}($ threshold $)=-\lambda$, or in other words $\mathcal{V}=-\lambda$ when all external momenta are on shell and at the threshold $\left(s=4 m^{2}, t=u=0\right)$. At other values of external momenta, we should have

$$
\begin{equation*}
\mathcal{V}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=-\lambda-\frac{\lambda^{2}}{32 \pi^{2}} \times \text { finite }-\frac{4 g^{4}}{16 \pi^{2}} \times \text { finite }+ \text { higher loop orders. } \tag{S.10}
\end{equation*}
$$

Comparing this formula with eq. (S.9) gives us

$$
\begin{equation*}
\delta_{\lambda}^{1 \text { loop }}=\frac{3 \lambda^{2}}{32 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{m^{2}}+\text { finite }\right)-\frac{24 g^{4}}{16 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}}+\text { finite }\right) . \tag{S.11}
\end{equation*}
$$

As promised last week, the fermionic loops provide for $\delta_{\lambda} \neq 0$ even if were to start from $\lambda=0$.

Next, we want to calculate the $\delta_{g}$ counterterm, so let us consider the $\Phi \bar{\Psi} \gamma^{5} \Psi$ vertex correction. By analogy with the QED vertex, we denote $\Gamma^{(5)}\left(p^{\prime}, p\right)$ the 1PI amplitude for two fermions of respective momenta $p$ and $p^{\prime}$ and one pseudoscalar of momentum $k=p^{\prime}-p$. At the one-loop level
of analysis，

$$
\begin{align*}
-\Gamma^{(5)}\left(p^{\prime}, p\right)= &  \tag{S.12}\\
= & -g \gamma^{5}-\delta_{g} \gamma^{5} \\
& +\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{i}{q^{2}-m^{2}+i 0} \times\left(-g \gamma^{5}\right) \frac{i}{\not p^{\prime}+\not q-M+i 0}\left(-g \gamma^{5}\right) \frac{i}{\not p+\not q-M+i 0}\left(-g \gamma^{5}\right) .
\end{align*}
$$

As in the previous calculation，the loop integral here diverges logarithmically，and the divergent part does not depend on the external momenta．Consequently，we may calculate this divergence for any values of $p, p^{\prime}$ ，and $k=p^{\prime}-p$ we like，for example $p=p^{\prime}=k=0$ ，which makes for a much simpler integral．Indeed，for zero external momenta，the fermionic line becomes

$$
\begin{align*}
\left(-g \gamma^{5}\right) \frac{i}{0+\not q-M+i 0}\left(-g \gamma^{5}\right) \frac{i}{0+\not q-M+i 0}\left(-g \gamma^{5}\right) & =g^{3} \frac{\gamma^{5}(\not q+M) \gamma^{5}(\not q+M) \gamma^{5}}{\left(q^{2}-M^{2}+i 0\right)^{2}} \\
& =g^{3} \frac{-\gamma^{5}}{q^{2}-M^{2}+i 0} \tag{S.13}
\end{align*}
$$

where the second equality follows from eq．（S．5）．Consequently，the loop integral in eq．（S．12） becomes easy to evaluate：

$$
\begin{aligned}
\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{-i g^{3} \gamma^{5}}{\left(q^{2}-m^{2}+i 0\right)\left(q^{2}-M^{2}+i 0\right)} & =g^{3} \gamma^{5} \times \int \frac{d^{4} q_{E}}{(2 \pi)^{4}} \frac{1}{\left(q_{E}^{2}+m^{2}\right)\left(q_{E}^{2}+M^{2}\right)} \\
& =g^{3} \gamma^{5} \times \int_{0}^{1} d x \int \frac{d^{4} q_{E}}{(2 \pi)^{4}} \frac{1}{\left[q_{e}^{2}+x M^{2}+(1-x) m^{2}\right]^{2}}
\end{aligned}
$$

《《using dimensional regularization》〉

$$
\begin{align*}
& =\frac{g^{3} \gamma^{5}}{16 \pi^{2}} \int_{0}^{1} d x\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{x M^{2}+(1-x) m^{2}}\right) \\
& =\frac{g^{3} \gamma^{5}}{16 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}}+1-\frac{m^{2}}{M^{2}-m^{2}} \log \frac{M^{2}}{m^{2}}\right) \tag{S.14}
\end{align*}
$$

Thus, to the order $g^{3}$,

$$
\begin{equation*}
\Gamma^{(5)}\left(p^{\prime}=p=0\right)=-g \gamma^{5}-\delta_{g} \gamma^{5}+\frac{g^{3} \gamma^{5}}{16 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}}+\text { finite }\right) \tag{S.15}
\end{equation*}
$$

And since the divergent part is momentum independent, it follows that for any external momenta,
$\Gamma^{(5)}\left(p^{\prime}, p\right)=-g \gamma^{5}-\delta_{g} \gamma^{5}+\frac{g^{3} \gamma^{5}}{16 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}}+\right.$ finite function of $\left.\left(p^{\prime}, p\right)\right)+O\left(g^{5}\right.$ or $\left.g^{3} \lambda\right)$.

In class, I have not explained the renormalization condition for the Yukawa coupling $g$, but it's clear that such condition should have form $\Gamma^{(5)}=-g \gamma^{5}$ for the on-shell fermions and some particular value of the pseudoscalar's $q^{2}$, for example $q^{2}=0$ or on-shell $q^{2}=m^{2}$ (allowed for $m \geq 2 M$ ). In light of eq. (S.16), this means

$$
\begin{equation*}
\delta_{g}^{1 \text { loop }}=\frac{g^{3}}{16 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}}+\text { finite }\right) \tag{S.17}
\end{equation*}
$$

where the finite part depends on the specific renormalization condition (and in general is a painfully complicated function of the $m / M$ mass ratio), but the infinite part is clear and unambiguous.

Our next targets are the fermion's mass and kinetic energy counterterms $\delta_{M}^{\psi}$ and $\delta_{Z}^{\psi}$. At the one-loop level of analysis, the Dirac field's 1PI two-point Green's function is

$$
\begin{align*}
-i \Sigma_{\psi}^{1 \text { loop order }}(p p) & =\rightarrow 0 \rightarrow+\rightarrow . \\
& =-i \delta_{M}^{\psi}+i \delta_{Z}^{\psi} \not p+\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{q^{2}-m^{2}+i 0} \times\left(-g \gamma^{5}\right) \frac{i}{p p+\not q-M+i 0}\left(-g \gamma^{5}\right) . \tag{S.18}
\end{align*}
$$

This time, we cannot set $p=0$ so we must be more careful. Let us re-write the integrand of the
loop integral as

$$
\begin{equation*}
-g^{2} \frac{\mathcal{N}}{\mathcal{D}} \tag{S.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{N}=\gamma^{5}(\not q+\not p+M) \gamma^{5} \quad \text { and } \quad \mathcal{D}=\left(q^{2}-m^{2}+i 0\right) \times\left((p+q)^{2}-M^{2}+i 0\right) \tag{S.20}
\end{equation*}
$$

Using the Feynman's parameter trick we may simplify the denominator as

$$
\begin{align*}
\frac{1}{\mathcal{D}} & =\int_{0}^{1} d x \frac{1}{\left[(1-x)\left(q^{2}-m^{2}\right)+x\left((p+q)^{2}-M^{2}\right)+i 0\right]^{2}} \\
& =\int_{0}^{1} d x \frac{1}{\left[\ell^{2}-\Delta+i 0\right]^{2}} \tag{S.21}
\end{align*}
$$

where

$$
\begin{equation*}
\ell=q+x p \quad \text { and } \quad \Delta=x M^{2}+(1-x) m^{2}-x(1-x) p^{2} \tag{S.22}
\end{equation*}
$$

As usual, we take the $\int d x$ integral after integrating over momentum, which allows us to shift the momentum variable from $p^{\mu}$ to $\ell^{\mu}$, thus

$$
\begin{equation*}
\Sigma_{\psi}^{1 \text { loop }}(\not p)=-i g^{2} \int_{0}^{1} d x \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\mathcal{N}}{\left[\ell^{2}-\Delta+i 0\right]^{2}} \tag{S.23}
\end{equation*}
$$

In terms of the shifted loop momentum $\ell$, the numerator becomes

$$
\begin{equation*}
\mathcal{N}=\gamma^{5}(\not \ell+(1-x) \not p+M) \gamma^{5}=M-(1-x) \not p-\not \ell, \tag{S.24}
\end{equation*}
$$

where the last term $\ell \ell$ does not contribute to the momentum integral because it's odd under the $\ell \rightarrow-\ell$ symmetry, thus

$$
\begin{equation*}
\int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\not \subset}{\left[\ell^{2}-\Delta+i 0\right]^{2}}=0 \tag{S.25}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\Sigma_{\psi}^{1 \text { loop }}(\not p)=-i g^{2} \int_{0}^{1} d x[M-(1-x) \not p] \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{1}{\left(\ell^{2}-\Delta+i 0\right)^{2}} \tag{S.26}
\end{equation*}
$$

Note that although the two-fermion amplitude $\Sigma_{\psi}$ has superficial degree of divergence $D=+1$,
the leading linear divergence (S.25) vanishes by Lorentz symmetry, and the remaining momentum integral (S.26) has only the sub-leading logarithmic UV divergence. Evaluating this integral by going to the Euclidean momentum space and using dimensional regularization, we obtain

$$
\begin{equation*}
\int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{1}{\left(\ell^{2}-\Delta+i 0\right)^{2}}=\frac{i}{16 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{\Delta}\right) \tag{S.27}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\Sigma_{\psi}^{1 \text { loop }}(\not p)=\delta_{M}^{\psi}-\delta_{Z}^{\psi} \not p+\frac{g^{2}}{16 \pi^{2}} \int_{0}^{1} d x[M-(1-x) \not p]\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{(1-x) m^{2}+x M^{2}-x(1-x) p^{2}}\right) . \tag{S.28}
\end{equation*}
$$

The renormalization conditions for the fermion's propagator correction $\Sigma^{\psi}(\not p)$ are

$$
\begin{equation*}
\left.\Sigma\right|_{\not p=M}=0 \quad \text { and }\left.\quad \frac{d \Sigma}{d \not p}\right|_{\not p=M}=0 \tag{S.29}
\end{equation*}
$$

In light of eq. (S.28), the second condition (S.29) becomes

$$
\begin{align*}
\delta_{Z}^{\psi}[1 \text { loop }] & =\left.\frac{g^{2}}{16 \pi^{2}} \frac{\partial}{\partial \not p} \int_{0}^{1} d x[M-(1-x) \not p]\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{(1-x) m^{2}+x M^{2}-x(1-x) p^{2}}\right)\right|_{\not p=M} \\
& =\frac{g^{2}}{16 \pi^{2}} \int_{0}^{1} d x\left[(x-1)\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{x^{2} M^{2}+(1-x) m^{2}}\right)+\frac{2 x^{2}(1-x) M^{2}}{x^{2} M^{2}+(1-x) m^{2}}\right] \\
& =-\frac{g^{2}}{32 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}}+\text { finite }\right) . \tag{S.30}
\end{align*}
$$

At the same time, the first condition (S.29) implies

$$
\begin{align*}
\delta_{M}^{\psi}[1 \text { loop }] & -M \delta_{Z}^{\psi}[1 \text { loop }] \\
& =-\left.\frac{g^{2}}{16 \pi^{2}} \int_{0}^{1} d x[M-(1-x) \not p]\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{(1-x) m^{2}+x M^{2}-x(1-x) p^{2}}\right)\right|_{\not p=M} \\
& =-\frac{g^{2}}{16 \pi^{2}} \int_{0}^{1} d x x M \times\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{x^{2} M^{2}+(1-x) m^{2}}\right) \\
& =-\frac{g^{2} M}{32 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}}+\text { finite }\right) \tag{S.31}
\end{align*}
$$

and consequently

$$
\begin{equation*}
\delta_{M}^{\psi}[1 \text { loop }]=-\frac{g^{2} M}{16 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}}+\text { finite }\right) . \tag{S.32}
\end{equation*}
$$

Note that similarly to QED, the fermionic mass counterterm in the Yukawa theory is proportional to the mass itself and diverges logarithmically rather than linearly in the UV cutoff ( $c f$. integral (S.26) prior to dimensional regularization). As in QED, this behavior is due to an additional symmetry of the Yukawa theory when the fermion mass happens to vanish. Specifically, for $M=0$ we have a discrete chiral symmetry

$$
\begin{equation*}
\Psi(x) \rightarrow \gamma^{5} \Psi(x), \quad \bar{\Psi}(x) \rightarrow-\bar{\Psi}(x) \gamma^{5}, \quad \Phi(x) \rightarrow-\Phi(x) . \tag{S.33}
\end{equation*}
$$

Unlike the gauge coupling in QED, the pseudoscalar Yukawa coupling does not respect continuous chiral transforms $\Psi(x) \rightarrow \exp \left(i \alpha \gamma^{5}\right) \Psi(x)$, but the discrete symmetry is sufficient for preventing the massless Yukawa theory from developing a mass shift via loop corrections.

Finally, consider the boson's mass and kinetic energy counterterms $\delta_{M}^{\phi}$ and $\delta_{Z}^{\phi}$. At the one-loop level of analysis, the pseudoscalar field's 1PI two-point Green's function is

$$
\begin{align*}
& \vdots  \tag{S.34}\\
-i \Sigma_{\phi}^{1 \text { loop }}\left(k^{2}\right)= & \vdots \\
= & -i \delta_{m}^{\phi}+i \delta_{Z}^{\phi} k^{2}+\frac{i \lambda m^{2}}{32 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+1+\log \frac{\mu^{2}}{m^{2}}\right) \\
& -\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{tr}\left(\frac{i}{\not p-M+i 0}\left(-g \gamma^{5}\right) \frac{i}{\not p+\not k-M+i 0}\left(-g \gamma^{5}\right)\right) .
\end{align*}
$$

Again, we re-write the fermionic loop integral as

$$
\begin{equation*}
+g^{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{\mathcal{N}}{\mathcal{D}} \tag{S.35}
\end{equation*}
$$

where the denominator is the usual

$$
\begin{equation*}
\mathcal{D}=\left(p^{2}-M^{2}+i 0\right) \times\left((p+k)^{2}-M^{2}+i 0\right) \tag{S.36}
\end{equation*}
$$

and hence

$$
\begin{align*}
\frac{1}{\mathcal{D}} & =\int_{0}^{1} d x \frac{1}{\left[\ell^{2}-\Delta+i 0\right]^{2}}  \tag{S.37}\\
\text { for } \ell & =p+k x \\
\text { and } \Delta & =M^{2}-x(1-x) k^{2}
\end{align*}
$$

and the numerator is

$$
\begin{align*}
\mathcal{N} & =\operatorname{tr}\left[(\not p+M) \gamma^{5}(\not p+\not p+M) \gamma^{5}\right] \\
& =\operatorname{tr}[(M+\not p)(M-\not p-\not k)] \\
& =4 M^{2}-4 p(p+k)  \tag{S.38}\\
& =4 M^{2}-4(\ell-x k)(\ell+k-x k) \\
& =4 M^{2}-4 \ell^{2}+4 x(1-x) k^{2}-4(1-2 x)(\ell \cdot k) .
\end{align*}
$$

The last term here is odd with respect to $\ell \rightarrow-\ell$ and hence does not contribute to the $\int d^{4} \ell$ integral. Effectively

$$
\mathcal{N} \cong 4 M^{2}-4 \ell^{2}+4 x(1-x) k^{2}
$$

so the integral (S.35) becomes


In four dimensions, the momentum integral (S.39) diverges quadratically. Hence, in dimensional regularization, we need to analytically continue from $D=4$ Euclidean dimensions down to
$D<2$, evaluate the integral for $D<2$, and only then continue back to $D=4-2 \epsilon$. Thus, working in the Euclidean momentum space, we have

$$
\begin{aligned}
\int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{2 M^{2}-\Delta+\ell^{2}}{\left(\ell^{2}+\Delta\right)^{2}} & \longrightarrow \mu^{4-D} \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{2 M^{2}-\Delta+\ell^{2}}{\left(\ell^{2}+\Delta\right)^{2}} \\
& =\mu^{4-D} \int \frac{d^{D} \ell}{(2 \pi)^{D}} \int_{0}^{\infty} d t t e^{-t \Delta}\left(2 M^{2}-\Delta-\frac{\partial}{\partial t}\right) e^{-t \ell^{2}} \\
& =\mu^{4-D} \int_{0}^{\infty} d t t e^{-t \Delta}\left(2 M^{2}-\Delta-\frac{\partial}{\partial t}\right)\left[\int \frac{d^{D} \ell_{E}}{(2 \pi)^{D}} e^{-t \ell_{E}^{2}}=(4 \pi t)^{-D / 2}\right] \\
& =\frac{\mu^{4-D}}{(4 \pi)^{D / 2}} \int_{0}^{\infty} d t t e^{-t \Delta}\left(\left(2 M^{2}-\Delta\right) t^{-(D / 2)}+\frac{D}{2} t^{-(D / 2)-1}\right) \\
& =\frac{\mu^{4-D}}{(4 \pi)^{D / 2}}\left(\left(2 M^{2}-\Delta\right) \Gamma\left(2-\frac{D}{2}\right) \Delta^{(D / 2)-2}+\frac{D}{2} \Gamma\left(1-\frac{D}{2}\right) \Delta^{(D / 2)-1}\right)
\end{aligned}
$$

$\langle\langle$ now take $D=4-2 \epsilon\rangle\rangle$

$$
\begin{align*}
& =\frac{1}{16 \pi^{2}} \Gamma(\epsilon)\left(\frac{4 \pi \mu^{2}}{\Delta}\right)^{\epsilon}\left(2 M^{2}-\Delta+\frac{2-\epsilon}{\epsilon-1} \Delta\right) \\
& \underset{\epsilon \rightarrow 0}{\longrightarrow} \frac{1}{16 \pi^{2}}\left[\left(2 M^{2}-3 \Delta\right)\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{\Delta}\right)-\Delta\right] . \tag{S.40}
\end{align*}
$$

Consequently,

$$
\begin{align*}
\Sigma_{\phi}^{1 \text { loop }}\left(k^{2}\right) & =\delta_{m}^{\phi}-\delta_{Z}^{\phi} k^{2}-\frac{\lambda m^{2}}{32 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+1+\log \frac{\mu^{2}}{m^{2}}\right) \\
& -\frac{g^{2}}{4 \pi^{2}} \int_{0}^{1} d x\left[\left(2 M^{2}-3 \Delta\right)\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{\Delta}\right)-\Delta\right] \tag{S.41}
\end{align*}
$$

Similarly to the fermion's propagator correction $\Sigma_{\psi}$ discussed above, the renormalization conditions for a scalar or a pseudoscalar field are

$$
\begin{equation*}
\left.\Sigma_{\phi}\right|_{k^{2}=m^{2}}=0 \quad \text { and }\left.\quad \frac{\partial \Sigma_{\phi}}{\partial k^{2}}\right|_{k^{2}=m^{2}}=0 \tag{S.42}
\end{equation*}
$$

Therefore, in light of eq. (S.41),

$$
\begin{align*}
\delta_{Z}^{\phi}[1 \text { loop }] & =-\frac{g^{2}}{4 \pi^{2}} \frac{\partial}{\partial k^{2}} \int_{0}^{1} d x\left[\left(2 M^{2}-3 \Delta\right)\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{\Delta}\right)-\Delta\right]_{k^{2}=m^{2}} \\
& =+\frac{g^{2}}{4 \pi^{2}} \int_{0}^{1} d x x(1-x) \times\left.\frac{\partial}{\partial \Delta}\left(\left(2 M^{2}-3 \Delta\right)\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{\Delta}\right)-\Delta\right)\right|_{k^{2}=m^{2}}  \tag{S.43}\\
& =-\frac{g^{2}}{4 \pi^{2}} \int_{0}^{1} d x x(1-x)\left[\frac{3}{\bar{\epsilon}}+3 \log \frac{\mu^{2}}{M^{2}-x(1-x) m^{2}}+\frac{2 x(1-x) k^{2}}{M^{2}-x(1-x) m^{2}}\right] \\
& =-\frac{g^{2}}{8 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}}+\text { finite }\right)
\end{align*}
$$

Likewise,

$$
\begin{align*}
\delta_{m}^{\phi}[1 \text { loop }] & -m^{2} \delta_{Z}^{\phi}[1 \text { loop }]-\frac{\lambda m^{2}}{32 \pi^{2}}\left(\frac{1}{\bar{\epsilon}}+1+\log \frac{\mu^{2}}{m^{2}}\right) \\
& =-\frac{g^{2}}{4 \pi^{2}} \int_{0}^{1} d x\left[\left(2 M^{2}-3 \Delta\right)\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{\Delta}\right)-\Delta\right]_{k^{2}=m^{2}} \\
& =-\frac{g^{2}}{4 \pi^{2}} \int_{0}^{1} d x\left[\left(3 x(1-x) m^{2}-M^{2}\right) \times\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}-x(1-x) m^{2}}\right)+\text { finite }\right] \\
& =-\frac{g^{2}}{4 \pi^{2}}\left(\left(\frac{1}{2} m^{2}-M^{2}\right)\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}}\right)+\text { finite }\right] \tag{S.44}
\end{align*}
$$

and hence

$$
\begin{equation*}
\delta_{m}^{\phi}[1 \text { loop }]=\left[\frac{\lambda m^{2}}{32 \pi^{2}}+\frac{g^{2} M^{2}}{4 \pi^{2}}\right] \times\left(\frac{1}{\bar{\epsilon}}+\log \frac{\mu^{2}}{M^{2}}\right)+\text { finite } . \tag{S.45}
\end{equation*}
$$

Note that unlike the other counterterms of the Yukawa theory, the pseudoscalar mass correction $\delta_{m}^{\phi}$ diverges quadratically rather than logarithmically. The dimensional regularization however does not see the quadratic divergence itself, all it sees is the sub-leading logarithmic divergence accompanying the quadratic divergence. Thus, in terms of a different UV cutoff, eq. (S.45) means

$$
\begin{equation*}
\delta_{m}^{\phi}[1 \text { loop }]=(\text { unknown }) \times \Lambda^{2}+\left[\frac{\lambda m^{2}}{32 \pi^{2}}+\frac{g^{2} M^{2}}{4 \pi^{2}}\right] \times \log \frac{\Lambda^{2}}{M^{2}}+\text { finite } \tag{S.46}
\end{equation*}
$$

where the coefficient of the leading $\Lambda^{2}$ divergence depends on the cutoff's details - such as the
exact definition of $\Lambda^{2}$ for each cutoff. FYI, for the Wilson's hard-edge cutoff

$$
\begin{equation*}
\delta_{m}^{\phi}[1 \text { loop }]=-\frac{\lambda}{32 \pi^{2}}\left(\Lambda^{2}-m^{2} \log \frac{\Lambda^{2}}{m^{2}}\right)-\frac{g^{2}}{4 \pi^{2}}\left(\Lambda^{2}-M^{2} \log \frac{\Lambda^{2}}{M^{2}}\right)+\text { finite } \tag{S.47}
\end{equation*}
$$

