
Preface

These note were written for the Quantum Field Theory class I taught in 2020/21, hence

occasional references to previous lectures or homeworks in that class. None of them are

important to the Quantum Mechanics class I am teaching this year, not even to the extra

lectures. But if you are curious, you are welcome to look them up.

Second Quantization of Identical Bosons

Quantum Mechanics of many identical bosons can be done in the wave-function formal-

ism, but it’s often convenient to use the formalism of the creation and annihilation operators

in the Fock space. For historical reasons, this formalism is called the “second quantization”,

but this name is misleading: There is no new quantization, just the same old quantum

mechanics re-written in a new language. In these notes I shall develop the second quan-

tization formalism for any kind of identical bosons — they can be relativistic particles, or

non-relativistic particles (for example helium atoms), or even quasiparticles like phonons.

At the core of the second quantized formalism are the particle-creation and particle-

annihilation operators. For the relativistic particles these operators can be assembled into

quantum fields; this procedure is the exact reversal of what we did in an earlier set of notes

on the spectrum of a free scalar field. For the non-relativistic particles we may also construct

the non-relativistic quantum fields, and I shall do it later in these notes.

The Fock Space and its Basis

The Fock space is the Hilbert space of an arbitrary number of identical bosons,

F =
∞⊕
N=0

H(N bosons), (1)

and our first task is to construct the basis of this space which may be interpreted in terms

of occupation numbers nα. Here α’s should label 1-particle quantum states, so we start with

the single-particle Hilbert space H1 and build some kind of a complete orthonormal basis
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of states |α〉 with wave-functions φα(x).
?

I assume |α〉 to be eigenstates of some kind of

a 1-particle Hamiltonian, Ĥ1 |α〉 = εα |α〉, but the specific form of the operator Ĥ1 is not

important for our purposes. For simplicity, I also assume the spectrum of α to be discrete.
†

Given a one-particle basis {|α〉}, we may construct a complete basis of the two-particle

Hilbert space H2 using eigenstates of the operator Ĥ2 = Ĥ1(1
st)+ Ĥ1(2

nd). Naively, this op-

erator has eigenstates |α〉⊗|β〉 with energies εα+εβ and wave functions φα(x1)×φβ(x2). How-

ever, two identical bosons must have a symmetric wave function φαβ(x1,x2) = φαβ(x2,x1).

Consequently, we must symmetrize:

|α, β〉 = |β, α〉 =


|α〉 ⊗ |β〉 + |β〉 ⊗ |α〉√

2
for β 6= α,

|α〉 ⊗ |α〉 for β = α,

(2)

or in the wave-function Language

φαβ(x1,x2) = φβα(x1,x2) =


φα(x1)φβ(x2) + φβ(x1)φα(x2)√

2
for β 6= α,

φα(x1)φα(x2) for β = α,

(3)

Similarly, wave functions of N identical bosons must be totally symmetric,

ψ(x1,x2, . . . ,xN ) = ψ(any permutation of the x1,x2, . . . ,xN ). (4)

To construct a complete basis of such N -particle wave functions, we use eigenstates of the

ĤN =
N∑
i=1

Ĥ1(i
th particle). (5)

Without the symmetry requirement (4), all eigenstates of this Hamiltonian would be of the

form |α〉⊗ |β〉⊗ · · · ⊗ |ω〉, with energies εα + εβ + · · ·+ εω, but because we are in the Hilbert

? By abuse of notations, I include spin, isospin, and any other discrete quantum numbers a particle may
have with the x = (x, y, z, spin, etc.).
† A continuum spectrum would lead to the same physics, but we would need more complicated formulae
to handle states with occupation numbers nα > 1 for continuous α.
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space of N identical bosons, we must symmetrize such states according to

|α, β, . . . , ω〉 =
|α〉 ⊗ |β〉 ⊗ · · · ⊗ |ω〉 + all distinct permutations of α, β, . . . , ω√

# of distinct permutations
,

φαβ···ω(x1,x2, . . . ,xN ) =
φα(x1)φβ(x2) · · ·φω(xN ) + all distinct permutations of α, β, . . . , ω√

# of distinct permutations
.

(6)

Consequently, the order of the N single-particle labels α, β, . . . , ω of a state (6) does not

matter,

|α, β, . . . , ω〉 = |any permutation of the α, β, . . . , ω〉 , (7)

which means that we may uniquely specify such a state in terms of its occupations numbers

nβ that count how many times each β appears in the list α, β, . . . , ω. For example,

|α, α, α, β, β, γ, γ, δ, ε〉 =
∣∣3α, 2β, 2γ , 1δ, 1ε, 0all others〉 . (8)

Formally,

|α1 . . . , αN 〉 =
∣∣{nβ}〉 where nβ =

N∑
i=1

δαi,β . (9)

Note that
∑

β nβ = N , so all but a finite number of the occupations numbers must vanish.

The states (6) are eigenstates of the Hamiltonian (5) in the N -boson Hilbert space HN ,

so together they form a complete orthonormal basis of the HN . In terms of the occupation

numbers, this basis comprises states
∣∣{nβ}〉 where nβ are non-negative integers which total

up to N ,
∑

β nβ = N . Removing the latter constraint, we construct a bigger Hilbert space

which spans
∣∣{nβ}〉 with all values of the N =

∑
β nβ. Physically, this space is the Fock

space

F = |vacuum〉 ⊕ H1 ⊕ H2 ⊕ H3 ⊕ · · · =
∞⊕
N=0

HN (10)

of the quantum theory of an arbitrary number N = 0, 1, 2, 3, . . . of identical bosons.
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In other words, what we have done thus far is to construct a basis of the entire Fock

space comprising states
∣∣{nβ}〉 with definite occupation numbers. We can think of this basis

as a common eigenbasis of a family of commuting hermitian operators n̂β with eigenvalues

nβ = 0, 1, 2, . . .. Such operators are very useful for extending additive operators such as (5)

to the whole Fock space and for writing them in compact form

Ĥ
∣∣∣
wholeF

=
∑
β

εβn̂β . (11)

Indeed, the operators (5) and (11) have the same eigenstates |α1, · · · , αN 〉 and the same

eigenvalues
∑

β εβnβ = εα1
+ · · ·+ εαN .

For example, consider the free non-relativistic spinless particles (in a big box). The

single-particle Hamiltonian is Ĥ1 = 1
2mP̂2, so we may identify |α〉 as |p〉. Consequently, the

Fock-space Hamiltonian

Ĥtot =
∑
p

p2

2m
× n̂p (12)

comprises all the net Hamiltonians ĤN =
∑ 1

2mP̂2(i th) for any number N of the particles.

Likewise, the Fock-space net momentum operator

P̂tot =
∑
p

p× n̂p (13)

comprises the net momentum operators P̂N =
∑

i P̂(ith) of N particle systems for any N .

Creation and Annihilation Operators

To construct more interesting operators in the Fock space we need the creation and

the annihilation operators, so our next task is to construct the harmonic-oscillator-like â†α

and âα. We begin this by noticing that in the Fock space, the occupation numbers nβ are

completely independent from each other. That is, given any state
∣∣{nβ}〉 ∈ F , we may

change one particular nα → n′α ± 1 while keeping all the other nβ unchanged, n′β = nβ for
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β 6= α, and the state |{n′β}〉 would be a valid state in the Fock space F . This means that

the Fock space is a direct product of single-mode Hilbert spaces,

F =
⊗
β

H(mode β) where H(mode β) spans
∣∣nβ〉 for nβ = 0, 1, 2, 3, . . . . (14)

The Hilbert space of a single mode looks like a Hilbert space of a Harmonic oscillator,

so we may construct oscillator-like creation and annihilation operators according to

â† |n〉 def
=
√
n+ 1 |n+ 1〉 , â |n〉 def

=

{√
n |n− 1〉 for n > 0,

0 for n = 0,
(15)

and hence â†â = n̂ and [â, â†] = 1. Similarly, the direct product of single-mode Hilbert

spaces in eq. (14) looks like a system of many harmonic oscillators, one oscillator for each

mode β. This allows us to construct a whole family of oscillator-like creation and annihilation

operators in the Fock space, namely

â†α
∣∣{nβ}〉 def

=
√
nα + 1

∣∣{n′β = nβ + δαβ}
〉
,

âα
∣∣{nβ}〉 def

=

{√
nα
∣∣{n′β = nβ − δαβ}

〉
for nα > 0,

0 for nα = 0,

n̂α = â†αâα .

(16)

It is easy to see from these definitions that the operators â†α, âα, and n̂α for different modes

α commute with each other, but for the same mode [âα, â
†
α] = 1. Altogether, we have the

bosonic commutation relations

[âα, âβ] = 0, [â†α, â
†
β] = 0, [âα, â

†
β] = δαβ . (17)
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The operators â†α and âα do not commute with the net particle number operator N̂ =
∑

β n̂β.

Instead, [N̂ , â†α] = +â†α, [N̂ , âα] = −âα and hence

N̂ â†α = â†α(N̂ + 1) and N̂ âα = âα(N̂ − 1), (18)

an â†α operator creates a particle while an âα operator annihilates (destroys) a particle.

That’s why the â†α are called the creation operators and the âα are called the annihilation

operators.

Now let’s consider the action of the creation and annihilation operators in the wave-

function language.

Theorem: Let |N,ψ〉 be an N-boson quantum state with a most general — but totally

symmetric — wave function ψ(x1, . . . ,xN ). Let ψ′(x1, . . .xN+1) be the totally symmetric

wave function of the (N + 1) boson state |N + 1, ψ′〉 = â†α |N,ψ〉 while ψ′′(x1, . . .xN−1) is

the totally symmetric wave function of the (N − 1) boson state |N − 1, ψ′′〉 = âα |N,ψ〉.
Then:

ψ′(x1, . . . ,xN+1) =
1√
N + 1

N+1∑
i=1

φα(xi)× ψ(x1, . . . , 6xi, . . . ,xN+1), (19)

ψ′′(x1, . . . ,xN−1) =
√
N

∫
d3xN φ

∗
α(xN )× ψ(x1, . . . ,xN−1,xN ). (20)

In particular, for N = 0 the state â†α |0〉 has ψ′(x1) = φα(x1), while for N = 1 the state

âα |β〉 has ψ′′(no arguments) = 〈φα|ψ〉. Also, for N = 0 we simply define âα |0〉
def
= 0.

Let me momentarily use eqs. (19) and (20) as definitions of the creation operators â†α

and the annihilation operators âα. To verify that these definitions are completely equivalent

to the definitions (16) in terms of the occupation-number basis, I am going to prove the

following lemmas:

Lemma 1: The creation operators â†α defined according to eq. (19) are indeed the hermitian

conjugates of the operators âα defined according to eq. (20).
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Lemma 2: The operators (19) and (20) obey the bosonic commutation relations

[âα, âβ] = 0, [â†α, â
†
β] = 0, [âα, â

†
β] = δαβ . (21)

Lemma 3: Let φαβ···ω(x1,x2 . . . ,xN ) be the N–boson wave function of the state

|α, β, · · · , ω〉 =
1√
T
â†ω · · · â

†
β â
†
α |0〉 (22)

where the creation operators â†α act according to eq. (19) while T is the number of trivial

permutations between coincident entries of the list (α, β, . . . , ω) (for example, α ↔ β when

α and β happen to be equal). In terms of the occupation numbers nγ , T =
∏
γ nγ !. Then

φαβ···ω(x1,x2 . . . ,xN ) =
1√
D

distinct permutations
of (α,β,...,ω)∑
(α̃,β̃,...,ω̃)

φα̃(x1)× φβ̃(x2)× · · · × φω̃(xN )

=
1√

T ×N !

all N ! permutations
of (α,β,...,ω)∑
(α̃,β̃,...,ω̃)

φα̃(x1)× φβ̃(x2)× · · · × φω̃(xN ),

(23)

where D = N !/T is the number of distinct permutations. In other words, the state (22) is

precisely the symmetrized state of N bosons in individual states |α〉 , |β〉 , . . . , |ω〉.

I shall prove the Lemmas 1–3 in the Appendix at the end of these notes. For the moment

let me simply state that these three Lemmas that the definitions (19) and (20) of the creation

and annihilation operators in the wave-function language indeed completely agree with the

definitions (16) of the same operators in terms of the occupation number basis.

One-body and Two-body Operators

in the Wave Function and the Fock Space Languages

Of particular interest to QM of many-particle systems are operator products â†αâβ,

â†αâ
†
β âγ âδ, etc., containing equal numbers of creation and annihilation operators. Such prod-

ucts — and their sums — commute with N̂ and may be used to construct physically inter-

esting operators for systems where the particles are never created or destroyed. For example,
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for the free non-relativistic particles (in a big box)

Ĥtot =
∑
p

p2

2m
â†pâp , P̂tot =

∑
p

p â†pâp , (24)

cf. eqs. (12) and (13).

The operators (18) are examples of net one-body operators, i.e., additive operators

which act on one particle at a time In the wave-function language (AKA, the first-quantized

formalism), such operators act on N–particle states according to

Â
(wf)
net =

N∑
i=1

Â(ith particle) (25)

where Â is some kind of a single-particle operator. For example,

the net momentum operator P̂
(wf)
net =

N∑
i=1

p̂i , (26)

the net kinetic energy operator K̂
(wf)
net =

N∑
i=1

p̂2
i

2m
, (27)

the net potential energy operator V̂
(wf)
net =

N∑
i=1

V (x̂i). (28)

In the Fock space language (AKA, the second-quantized formalism), such net one-body

operators take form

Â
(fs)
net =

∑
α,β

〈α| Â |β〉 × â†αâβ (29)

where the matrix elements Aα,β = 〈α| Â |β〉 are taken in the one-particle Hilbert space.

Lemma 4: Although eqs. (25) and (29) look very different from each other, they describe

exactly the same net one-body operator.

At this point, it should be obvious to you why and how the lemma works when Â has

only diagonal matrix elements in the basis {|α〉}, for example the energy and the momentum
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of a free particle in the momentum basis in eqs. (24). The general case with off-diagonal

matrix elements is not so obvious, but you can find the proof in the Appendix to theses

notes.

Lemma 5: Let Â, B̂, and Ĉ be some one-particle operators, and let Â
(fs)
net , B̂

(fs)
net , and Ĉ

(fs)
net

be the corresponding net one-body operators in the fock space according to eq. (29).

if [Â, B̂] = Ĉ then
[
Â
(fs)
net , B̂

(fs)
net

]
= Ĉ

(fs)
net . (30)

For example, consider a gas of free atoms with nonzero integer spin s = 1, 2, . . .. In terms of

the creation and annihilation operators, the net spin operator for the whole gas becomes

Ŝnet =
∑
p

∑
ms,m′

s

〈s,ms| Ŝ1

∣∣s,m′s〉× â†p,ms
âp,m′

s
, (31)

and since the single atom’s spin operator obeys the angular momentum commutation re-

lations [Ŝi1, Ŝ
j
1] = iεijkŜk1 , the net spin operator satisfies the same relations [Ŝinet, Ŝ

j
net] =

iεijkŜknet.

Again, the proof of Lemma 5 is in the Appendix to these notes.

? ? ?

Interactions between particles are described by operators involving two or more particles

at the same time. For example, a two-body potential V2(xi − xj) gives rise to the net

potential operator which acts on a wave functions of N particles as

V̂netΨ(x1, . . . ,xN ) = 1
2

i,j=1,...,N∑
i 6=j

V2(xi − xj)Ψ(x1, . . . ,xN ). (32)

In the Fock-space formalism, this operator becomes

V̂net = 1
2

∑
α,β,γ,δ

Vα,β,γ,δ × â†αâ
†
β âδâγ (33)

9



where Vα,β,γ,δ are the matrix elements

Vα,β,γ,δ =

∫
dx1

∫
dx2 φ

∗
α(x1)φ

∗
β(x2)× V2(x1 − x2)× φγ(x1)φδ(x2). (34)

In particular, in the momentum basis |p〉,

Vp′
1,p

′
2,p1,p2

= L−3δp′
1+p′

2,p1+p2
×W (q)

where q = p′1 − p1 = p2 − p′2 and W (q) =

∫
dx e−iqx V2(x),

(35)

hence

V̂net = 1
2L
−3
∑
q

W (q)
∑
p1,p2

â†p1+qâ
†
p2−qâp2

âp1
. (36)

More generally, in the wave-function language we start with some operator B̂ in a two-

particle Hilbert space, make it act on all (i, j) pairs of particles (except (i = j)) in the

N -particle Hilbert space, and total up the pairs,

B̂
(wf)
net =

1

2

i,j=1,...,N∑
i 6=j

B̂(ith and jth particles). (37)

In the Fock space language, such a two-body operator becomes

B̂
(fs)
net = 1

2

∑
α,β,γ,δ

(〈α| ⊗ 〈β|)B̂(|γ〉 ⊗ |δ〉) â†αâ
†
β âδâγ . (38)

Note: in this formula, it is OK to use the un-symmetrized 2-particle states 〈α| ⊗ 〈β| and

|γ〉⊗|δ〉, and hence the un-symmetrized matrix elements of the B̂2. At the level of the second-

quantized operator B̂
(fs)
net , the Bose symmetry is automatically provided by â†αâ

†
β = â†β â

†
γ and

âδâγ = âγ âδ, even for the un-symmetrized matrix elements of the two-particle operator B̂.

Lemma 6: For any two-particle operator B̂ eqs. (37) and (38) define exactly the same net

operator B̂net. Similar to the other lemmas, the proof of this Lemma 6 is in the Appendix

to these notes.
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The two-body operators in the Fock space obey the same kind of commutation relations

as the corresponding two-particle operators. For example:

Lemma 7: Let Â be a one-particle operator while B̂ and Ĉ are two-particle operators.

Let Â
(fs)
net , B̂

(fs)
net , and Ĉ

(fs)
net be the corresponding net operators in the Fock space according to

eqs. (29) and (38).

if
[(
Â(1st) + Â(2nd)

)
, B̂
]

= Ĉ then
[
Â
(fs)
net , B̂

(fs)
net

]
= Ĉ

(fs)
net . (39)

Again, the proof of this Lemma is in the Appendix.

Generalization of the Fock-space formalism to operators involving more than two par-

ticles at the same time is straightforward. Three-body additive operators become sums

of â†αâ
†
β â
†
γaζ âεâδ with appropriate matrix-element coefficients, four-body operators involve

products â†â†â†â†ââââ of four creation and four annihilation operators, etc., etc.

Non-Relativistic Quantum Fields

In the previous section, we defined the creation and the annihilation operators in terms

of a particular basis of single-particle states |α〉. Changing to a new basis {|µ〉} involves a

linear transform |µ〉 =
∑

α |α〉 × 〈α|µ〉 and hence a similar linear transform of the creation

/ annihilation operators from â†α and âα to â†µ and âµ, namely

â†µ =
∑
α

â†α × 〈α|µ〉 , âµ =
∑
α

âα × 〈µ|α〉 . (40)

Indeed, in the Fock space |α〉 = â†α |0〉 while |µ〉 = â†µ |0〉, so the creation operators transform

exactly like Dirac kets; by Hermitian conjugation, the annihilation operators transform like

Dirac bras. And thanks to unitarity of this transform, the âµ and the â†µ obey the same

bosonic commutation relations (17) as the âα and the â†α.

Of particular importance is the coordinate basis in which the x-labeled operators become
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quantum fields. Specifically, the creation field

Ψ̂†(x) ≡ â†x =
∑
α

â†α × φα(x) (41)

which creates a particle at point x, and the annihilation field

Ψ̂(x) ≡ âx =
∑
α

âα × φ∗α(x) (42)

which annihilates a particle at point x. These fields obey the continuous version of the

bosonic commutation relations (17), namely[
Ψ̂(x), Ψ̂(x′)

]
= 0,

[
Ψ̂†(x), Ψ̂†(x′)

]
= 0,

[
Ψ̂(x), Ψ̂†(x′)

]
= δ(3)(x− x′). (43)

In the non-relativistic many-particle theory, many operators may be expressed in terms of

the creation and annihilation fields as
∫
d3x (something local). For example, the net particle

number operator N̂ becomes

N̂ =
∑
α

â†αâα =

∫
d3x Ψ̂†(x)Ψ̂(x), (44)

which tells us that n̂(x) = Ψ̂†(x)Ψ̂(x) is the local particle density operator. Consequently,

the potential energy operator for particles interacting with an external potential Ve(x) is

V̂net =

∫
d3xVe(x)× n̂(x) =

∫
d3xVe(x)× Ψ̂†(x)Ψ̂(x). (45)

Similarly, the net momentum operator is

P̂net =
∑
p

p â†pâp =

∫
d3x Ψ̂†(x)

(
−i∇Ψ̂(x)

)
, (46)

and the net non-relativistic kinetic energy operator is

Ĥkin
net =

∑
p

p2

2m
â†pâp =

∫
d3x Ψ̂†(x)

(
−∇2

2m
Ψ̂(x)

)
= +

1

2m

∫
d3x∇Ψ̂†(x) · ∇Ψ̂(x). (47)

Thus, the non-relativistic particles in an external potential Ve(x) but not interacting with
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each other have the Fock-space Hamiltonian of the form

Ĥ = Ĥkin
net + V̂net =

∫
d3x

(
1

2m
∇Ψ̂†(x) · ∇Ψ̂(x) + Ve(x)Ψ̂†(x)Ψ̂(x)

)
=

∫
d3x Ψ̂†(x)

(
−∇

2

2m
+ Ve(x)

)
Ψ̂(x).

(48)

For this Hamiltonian, the Heisenberg equations for the quantum fields become similar to the

ordinary Schrödinger equations for single-particle wave functions. Indeed, in the Heisenberg

picture of QM, the time-dependent quantum fields satisfy

i
∂

∂t
Ψ̂(x, t) =

[
Ψ̂(x, t), Ĥ

]
=

(
−∇

2

2m
+ Ve(x)

)
Ψ̂(x, t),

−i ∂
∂t

Ψ̂†(x, t) =
[
Ĥ, Ψ̂(x, t)

]
=

(
−∇

2

2m
+ Ve(x)

)
Ψ̂†(x, t).

(49)

Despite the similarity, these are not the true Schrödinger equations of the many-particle sys-

tem because: (1) They apply in the wrong picture of QM (Heisenberg instead of Schrödinger).

(2) The true wave-function ψ(x1, . . . ,xN ; t) of N particles depends on all of their coordinates

x1, . . . ,xN , unlike the quantum field Ψ̂(x, t) which depends on a single x regardless of how

many particles we have (or rather had since Ψ̂ does not preserve N). (3) Adding interac-

tions to the Hamiltonian (48) would make eqs. (49) non-linear, while the true Schrödinger

equations are always linear, no matter what.

Indeed, let the particles have a two-body interaction potential (32). In terms of the

quantum creation and annihilation fields, the Fock-space two-body potential becomes

V̂int = 1
2

∫
d3x1

∫
d3x2 V2(x1 − x2)× Ψ̂†(x1)Ψ̂

†(x2)Ψ̂(x2)Ψ̂(x1). (50)

Adding this interaction to the free Hamiltonian (48) makes the Heisenberg equations for the
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quantum fields nonlinear (and non-local), namely:

i
∂

∂t
Ψ̂(x, t) =

[
Ψ̂(x, t), Ĥ

]
=

(
−∇

2

2m
+ Ve(x)

)
Ψ̂(x, t)

+

∫
d3x′ V2(x

′ − x)Ψ̂†(x′)Ψ̂(x′)× Ψ̂(x),

−i ∂
∂t

Ψ̂†(x, t) = −
[
Ψ̂†(x, t), Ĥ

]
=

(
−∇

2

2m
+ Ve(x)

)
Ψ̂†(x, t)

+ Ψ̂†(x)×
∫
d3x′ V2(x

′ − x)Ψ̂†(x′)Ψ̂(x′).

(51)

However, without the two-body (or multi-body) interactions between the particles, the

Heisenberg equations (49) are linear and look just like Schrödinger equation for a single-

particle wave function. This similarity suggest that the quantum fields Ψ̂(x, t) and Ψ̂†(x, t)

may be obtained via the second quantization, which works like this: First, one quantizes

a single particle and writes the Schrödinger equation for its wave function. Second, one

re-interprets this wave function as a classical field ψ(x, t) and the the Schrödinger equation

becomes an Euler–Lagrange field equation which follows from the Lagrangian density

LSchr = −h̄ Im(ψ∗ψ̇) − h̄2

2m
∇ψ∗∇ψ − Ve(x)× ψ∗ψ . (52)

(Note, −h̄ Im(ψ∗ψ̇) = ih̄ψ∗ψ̇ + a total derivative.) Third, one switches to the Hamiltonian

formalism where the canonical conjugate field for ψ(x) is $(x) = ih̄ψ∗(x) and the classical

Hamiltonian is

H =

∫
d3x

(
ih̄ψ∗ × ψ̇ − L

)
=

∫
d3x

(
h̄2

2m
∇ψ∗∇ψ + Ve(x)× ψ∗ψ

)
. (53)

Finally, one quantizes the fields ψ(x) and ψ∗(x), hence the name “second quantization” as

the “first quantization” was writing down the single-particle Schrödinger equation in the first

place. Consequently, ψ(x) and ψ∗(x) become quantum fields Ψ̂(x) and Ψ̂†(x) obeying the

commutation relations (43) (which follow from the ih̄ψ∗(x) being the canonical conjugate of

ψ(x)), and the classical Hamiltonian (53) becomes the Hamiltonian operator (48).
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Historically, the second quantization was used as a heuristic for deriving the non-relati-

vistic quantum field theory. Some people tried to take the second quantization literally and

got into all kinds of trouble because it does not make physical sense: A wave function is

not a classical field, and it should not be quantized again. Instead, one should not take the

intermediate steps of the second quantization seriously but focus on the end result — which

is a perfectly good quantum field theory. However, the physical content of this theory is not

a single particle but an arbitrary number of identical bosons, and the Ψ̂(x) and Ψ̂†(x) are

not quantized-again wave functions but quantum fields which destroy and create particles in

the Fock space. And of course, physically there is only one quantization.

The physically correct way to derive the non-relativistic QFT is the way we did it in

this note, the second quantization is only an old heuristic. Today, when one talks about a

second-quantized theory, it is simply a name for a quantum theory of an arbitrary number

of particles, usually formulated in terms of creation and annihilation operators in the Fock

space.

Appendix: Proofs of the Lemmas

Lemma 1: The creation operators â†α defined according to eq. (19) are indeed the hermitian

conjugates of the operators âα defined according to eq. (20).

Reminder: the equations (19) and (20) spell out the wavefunctions ψ′(x1, . . . ,xN+1) and

ψ′′(x, . . .xN−1) of the states |N + 1, ψ′〉 = â†α |N,ψ〉 and |N − 1, ψ′′〉 = âα |N, psi〉 in terms

of the (totally symmetric) wave function ψ(x1, . . . ,xN ) of the N–boson state |N,ψ〉. Specif-

ically,

ψ′(x1, . . . ,xN+1) =
1√
N + 1

N+1∑
i=1

φα(xi)× ψ(x1, . . . , 6xi, . . . ,xN+1), (19)

ψ′′(x1, . . . ,xN−1) =
√
N

∫
d3xN φ

∗
α(xN )× ψ(x1, . . . ,xN−1,xN ). (20)

Proof: To prove that the operators â†α and âα are hermitian conjugates of each other, we

need to compare their matrix elements and verify that for any two states |N,ψ〉 and |Ñ , ψ̃〉
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in the Fock space we have

〈Ñ , ψ̃| âα |N,ψ〉 = 〈N,ψ| â†α |Ñ , ψ̃〉
∗ . (54)

Since the âα always lowers the number of particles by 1 while the â†α always raises it by 1,

it is enough to check this equation for Ñ = N − 1 — otherwise, we get automatic zero on

both sides of this equation.

Let ψ′′(x1, . . . ,xN−1) be the wave function of the state |N − 1, ψ′′〉 = âα |N,Ψ〉 according

to eq. (20). Then, on the LHS of eq. (54) we have

〈N − 1, ψ̃| âα |N,ψ〉 =
〈
N − 1, ψ̃|N − 1, ψ′′

〉
=

∫
d3x1 · · ·

∫
d3xN−1 ψ̃

∗(x1, . . . ,xN−1)× ψ′′(x1, . . . ,xN−1)

=

∫
d3x1 · · ·

∫
d3xN−1 ψ̃

∗(x1, . . . ,xN−1)×

×
√
N

∫
d3xN φ

∗
α × ψ(x1, . . . ,xN )

=
√
N

∫
d3x1 · · ·

∫
d3xN ψ̃

∗(x1, . . . ,xN−1)× φ∗α(xN )× ψ(x1, . . . ,xN ).

(55)

Likewise, let ψ̃′(x1, . . . ,xN ) be the wave function of the state
∣∣N, ψ̃′〉 = â†α |N − 1, ψ̃〉 ac-

cording to eq. (19). Then the matrix element on the RHS of eq. (54) becomes

〈N,ψ| â†α |N − 1, ψ̃〉 =

∫
d3x1 · · ·

∫
d3xN ψ

∗(x1, . . . ,xN )× ψ̃′(x1, . . . ,xN )

=

∫
d3x1 · · ·

∫
d3xN ψ

∗(x1, . . . ,xN )×

× 1√
N

N∑
i=1

φα(xi)× ψ̃(x1, . . . 6xi, . . . ,xN )

=
1√
N

N∑
i=1

∫
d3x1 · · ·

∫
d3xN ψ

∗(x1, . . . ,xN )×

× φα(xi)× ψ̃(x1, . . . 6xi, . . . ,xN ).
(56)

By bosonic symmetry of the wavefunctions ψ and ψ̃, all terms in the sum on the RHS are

equal to each other. So, we may replace the summation with a single term — say, for i = N
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— and multiply by N , thus

〈N,ψ| â†α |N − 1, ψ̃〉 =
N√
N
×
∫
d3x1 · · ·

∫
d3xN ψ

∗(x1, . . . ,xN )×φα(xN )×ψ̃(x1, . . .xN−1).

(57)

By inspection, the RHS of eqs. (55) and (57) are complex conjugates of each other, thus

〈N − 1, ψ̃| âα |N,ψ〉 = 〈N,ψ| â†α |N − 1, ψ̃〉∗ . (54)

This completes the proof of Lemma 1.

Lemma 2: The operators (19) and (20) obey the bosonic commutation relations

[âα, âβ] = 0, [â†α, â
†
β] = 0, [âα, â

†
β] = δαβ . (58)

Proof: Let’s start by verifying that the creation operators defined according to eq. (19)

commute with each other. Pick any two such creation operators â†α and â†β, and pick any

N -boson state |N,ψ〉. Consider the (N + 2)-boson wavefunction ψ′′′(x1, . . . ,xN+2) of the

state |N + 2, ψ′′′〉 = â†αâ
†
β |N,ψ〉. Applying eq. (19) twice, we immediately obtain

ψ′′′(x1, . . . ,xN+2) =
1√

(N + 1)(N + 2)

∑
i,j=1,...,N+2

i6=j

φα(xi)× φβ(xj)×

× ψ(x1, . . . ,xN+2 except xi,xj).
(59)

On the RHS of this formula, interchanging α↔ β is equivalent to interchanging the summa-

tion indices i ↔ j — which has no effect on the sum. Consequently, the states â†αâ
†
β |N,ψ〉

and â†β â
†
α |N,ψ〉 have the same wavefunction (59), thus

â†αâ
†
β |N,ψ〉 = â†β â

†
α |N,ψ〉 . (60)

Since this is true for any N and any totally-symmetric wave function ψ, this means that the

creation operators â†α and â†β commute with each other.
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Next, let’s pick any two annihilation operators âα and âβ defined according to eq. (20)

and show that they commute with each other. Again, let |N,ψ〉 be an arbitrary N -boson

state . For N < 2 we have

âαâβ |N,ψ〉 = 0 = âβ â
†
α |N,ψ〉 , (61)

so let’s focus on the non-trivial case of N ≥ 2 and consider the (N − 2)-boson wavefunction

ψ′′′′ of the state |N − 2, ψ′′′′〉 = âαâβ |N,ψ〉. Applying eq. (20) twice, we obtain

ψ′′′′(x1, . . . ,xN−2) =
√
N(N − 1)

∫
d3xN

∫
d3xN−1 φ

∗
α(xN )× φ∗β(xN−1)×

× ψ(x1, . . . ,xN−2,xN−1,xN ).
(62)

On the RHS of this formula, interchanging α ↔ β is equivalent to interchanging the

integrated-over positions of the N th and the (N − 1)th boson in the original state |N,ψ〉.
Thanks to bosonic symmetry of the wave-function ψ, this interchange has no effect, thus

âαâβ |N,ψ〉 = âβ âα |N,ψ〉 . (63)

Therefore, when the annihilation operators defined according to eq. (20) act on the totally-

symmetric wave functions of identical bosons, they commute with each other.

Finally, let’s pick a creation operator â†β and an annihilation operator âα, pick an arbi-

trary N -boson state |N,ψ〉, and consider the difference between the states

∣∣N,ψ5
〉

= â†β âα |N,ψ〉 and
∣∣N,ψ6

〉
= âαâ

†
β |N,ψ〉 . (64)

Suppose N > 0. Applying eq. (20) to the wave function ψ and then applying eq. (19) to the

result, we obtain

ψ5(x1, . . . ,xN ) =
1√
N

N∑
i=1

φβ(xi)× ψ′′(x1, . . . , 6xi, . . . ,xN )

=
N∑
i=1

φβ(xi)×
∫
d3xN+1 φ

∗
α(xN+1)× ψ(x1, . . . , 6xi, . . . ,xN ,xN+1).

(65)
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On the other hand, applying first eq. (19) and then eq. (20), we arrive at

ψ6(x1, . . . ,xN ) =
√
N + 1

∫
d3xN+1 φ

∗
α(xN+1)× ψ′(x1, . . . ,xN ,xN+1)

=

∫
d3xN+1 φ

∗
α(xN+1)×

N+1∑
i=1

φβ(xi)× ψ(x1, . . . , 6xi, . . . ,xN+1)

=

∫
d3xN+1 φ

∗
α(xN+1)×


N∑
i=1

φβ(xi)× ψ(x1, . . . , 6xi, . . . ,xN ,xN+1)

+ φβ(xN+1)× ψ(x1, . . . ,xN )



=
N∑
i=1

φβ(xi)×
∫
d3xN+1 φ

∗
α(xN+1)× ψ(x1, . . . , 6xi, . . . ,xN ,xN+1)

+ ψ(x1, . . . ,xN )×
∫
d3xN+1 φ

∗
α(xN+1)× φβ(xN+1)

= ψ5(x1, . . . ,xN ) 〈〈 compare to eq. (65) 〉〉

+ ψ(x1, . . . ,xN )×
〈
φα|φβ

〉
.

(66)

Comparing eqs. (65) and (66), we see that

ψ6(x1, . . . ,xN )− ψ5(x1, . . . ,xN ) = ψ(x1, . . . ,xN )×
〈
φα|φβ

〉
= ψ(x1, . . . ,xN )×δαβ , (67)

where
〈
φα|φβ

〉
= δαβ by orthonormality of the 1-particle basis {φγ(x)}γ . In Dirac notations,

eq. (67) amounts to (
âαâ

†
β − â

†
β âα
)
|N,ψ〉 = |N,ψ〉 × δαβ . (68)

Thus far, we have checked this formula for all bosonic states |N,ψ〉 except for the vacuum

|0〉. To complete the proof, note that

âα |0〉 = 0 =⇒ â†β âα |0〉 = 0, (69)

while

âαâ
†
β |0〉 = âα

∣∣1, φβ〉 =
〈
φα|φβ

〉
× |0〉 = δαβ × |0〉 , (70)
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hence (
âαâ

†
β − â

†
β âα
)
|0〉 = δαβ × |0〉 . (71)

Altogether, eqs. (68) and (71) verify that

[âα, â
†
β] |Ψ〉 = δαβΨ (72)

for any state Ψ in the bosonic Fock space, hence the operators âα and â†β defined according

to eqs. (19) and (20) indeed obey the commutation relation [âα, â
†
β] = δα,β.

This completes the proof of Lemma 2.

Lemma 3: Let φαβ···ω(x1,x2 . . . ,xN ) be the N–boson wave function of the state

|α, β, · · · , ω〉 =
1√
T
â†ω · · · â

†
β â
†
α |0〉 (73)

where the creation operators â†α act according to eq. (19) while T is the number of trivial

permutations between coincident entries of the list (α, β, . . . , ω) (for example, α ↔ β when

α and β happen to be equal). In terms of the occupation numbers nγ , T =
∏
γ nγ !. Then

φαβ···ω(x1,x2 . . . ,xN ) =
1√
D

distinct permutations
of (α,β,...,ω)∑
(α̃,β̃,...,ω̃)

φα̃(x1)× φβ̃(x2)× · · · × φω̃(xN )

=
1√

T ×N !

all N ! permutations
of (α,β,...,ω)∑
(α̃,β̃,...,ω̃)

φα̃(x1)× φβ̃(x2)× · · · × φω̃(xN ),

(74)

where D = N !/T is the number of distinct permutations. In other words, the state (73) is

precisely the symmetrized state of N bosons in individual states |α〉 , |β〉 , . . . , |ω〉.

Proof: Let me start with a note on the normalization factor 1/
√
T in eq. (73). We need

this factor to properly normalize the multi-boson states in which some bosons may be in the
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same 1-particle mode. For example, for the two particle states,

|α, β〉 = â†β â
†
α |0〉 when α 6= β, but |α, α〉 =

1√
2
â†αâ

†
α |0〉 . (75)

In terms of the occupation numbers, the properly normalized states are

|{nα}α〉 =
⊗
α

(
|nα〉 =

(
â†α
)nα

√
nα!

|0〉
)
mode α

=

(∏
α

(
â†α
)nα

√
nα!

)
|vacuum〉 . (76)

hence the factor 1/
√
T in eq. (73).

Now let’s work out the wave functions of the states (73) by successively applying the

creation operators according to eq. (19):

1. For N = 1, states |α〉 = â†α |0〉 have wave functions φα(x).

2. For N = 2, states
√
T |α, β〉 = â†β â

†
α |0〉 have wavefunctions

√
T × φαβ(x1,x2) =

1√
2

(
φβ(x1)φα(x2) + φβ(x2)φα(x1)

)
. (77)

3. For N = 3, states
√
T |α, β, γ〉 = â†γ â

†
β â
†
α |0〉 have

√
T × φαβγ(x1,x2,x3) =

1√
3



φγ(x1)×
1√
2

(
φβ(x2)φα(x3) + φβ(x3)φα(x2)

)
+ φγ(x2)×

1√
2

(
φβ(x1)φα(x3) + φβ(x3)φα(x1)

)
+ φγ(x3)×

1√
2

(
φβ(x1)φα(x2) + φβ(x2)φα(x1)

)



=
1√
3!

6 permutations
of (x1,x2,x3)∑
(x̃1,x̃2,x̃3)

φγ(x̃1)φβ(x̃2)φα(x̃3)

=
1√
3!

6 permutations
of (α,β,γ)∑
(α̃,β̃,γ̃)

φα̃(x1)φβ̃(x2)φγ̃(x3).

(78)

Proceeding in this fashion, acting with a product of N creation operators on the vacuum

we obtain a totally symmetrized product of the 1-particle wave functions φα(x) through
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φω(x). Extrapolating from eq.(78), the N -particle state
√
T |α, . . . , ω〉 = â†ω · · · â†α |0〉, has

the totally-symmetrized wave function

√
T × φα···ω(x1, . . . ,xN ) =

1√
N !

all permutations
of (α,...,ω)∑
(α̃,...,ω̃)

φα̃(x1)× · · · × φω̃(xN ). (79)

Dividing both sides of this formula by the
√
T factor, we immediately arrive at the second

line of eq. (74).

Finally, the top line of eq. (74) obtains from the bottom line by adding up coincident

terms. Indeed, if some one-particle states appear multiple times in the list (α, . . . , ω), then

permuting coincident entries of this list has no effect. Altogether, there T such trivial

permutations. By group theory, this means that out of N ! possible permutations of the list,

there are only D = N !/T distinct permutations. But for each distinct permutations, there

are T coincident terms in the sum on the bottom line of eq. (74). Adding them up gives us

the top line of eq. (74).

This completes the proof of Lemma 3.

Lemma 4: For any one-particle operator Â, the wave-function-language equation

Â
(wf)
net =

N∑
i=1

Â(ith particle) (25)

and the Fock-space-language equation

Â
(fs)
net =

∑
α,β

〈α| Â |β〉 × â†αâβ (80)

define exactly the same one-body additive operator Ânet.

Proof: To establish the equality between the operators (25) and (80), we are going to verify

that they have exactly the same matrix elements between any N–boson states 〈N, ψ̃| and

22



|N,ψ〉,

〈N, ψ̃| Â(wf)
net |N,ψ〉 = 〈N, ψ̃| Â(fs)

net |N,ψ〉 . (81)

Let’s start by relating the matrix elements on the LHS of this formula to the Aα,β = 〈α| Â |β〉.
For N = 1 the relation is very simple: Since the states |α〉 make a complete basis of the

1-particle Hilbert space, for any 1-particle states 〈ψ̃| and |ψ〉

〈ψ̃| Â |ψ〉 =
∑
α,β

〈ψ̃|α〉×〈α| Â |β〉×〈β|ψ〉 =
∑
α,β

Aαβ×
∫
d3x̃ ψ̃∗(x̃)φα(x̃)×

∫
d3xφ∗β(x)ψ(x).

(82)

This is undergraduate-level QM.

In the N–particle Hilbert space we have a similar formula for the matrix elements of the

Â acting on particle #i, the only modification being integrals over the coordinates of the

other particles,

〈N, ψ̃| Â1(i
th) |N,ψ〉 =

=

∫
· · ·
∫
d3x1 · · · d3xi///// · · · d3xN

∑
α,β

Aαβ ×
(∫

d3x̃i ψ̃
∗(x1, . . . , x̃i, . . . ,xN )φα(x̃i)

)

×
(∫

d3xi φ
∗
β(xi)ψ(x1, . . . ,xi, . . . ,xN )

)
=
∑
α,β

Aαβ ×
∫
· · ·
∫
d3x1 · · · d3xN d3x̃i ψ̃∗(x1, . . . , x̃i, . . . ,xN )× φα(x̃i)

× φ∗β(xi)× ψ(x1, . . . ,xi, . . . ,xN ).

(83)

For symmetric wave-functions of identical bosons, we get the same matrix element regardless

of which particle #i we are acting on with the operator Â, hence for the net A operator (25),

〈N, ψ̃| Â(wf)
net |N,ψ〉 = N ×

∑
α,β

Aαβ ×
∫
· · ·
∫
d3x1 · · ·d3xN−1 d3xNd3x̃N (84)

ψ̃∗(x1, . . . ,xN−1, x̃N )× φα(x̃N )

× φ∗β(xN )× ψ(x1, . . . ,xN−1,xN ).

Now consider matrix elements of the Fock-space operator (80). In light of eq. (20), the
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state |N − 1, ψ′′〉 = âβ |N,ψ〉 has wave-function

ψ′′(x1, . . . ,xN−1) =
√
N

∫
d3xN φ

∗
β(xN )× ψ(x1, . . . ,xN−1,xN ). (85)

Likewise, the state
∣∣N − 1, ψ̃′′

〉
= âα |N, ψ̃〉 has wave-function

ψ̃′′(x1, . . . ,xN−1) =
√
N

∫
d3x̃N φ

∗
α(x̃N )× ψ̃(x1, . . . ,xN−1, x̃N ). (86)

Consequently,

〈N, ψ̃| â†αâβ |N,ψ〉 =
〈
N − 1, ψ̃′′

∣∣ ∣∣N − 1, ψ′′
〉

=

∫
· · ·
∫
d3x1 · · ·xN−1 ψ̃′′∗(x1, . . . ,xN−1)× ψ′′(x1, . . . ,xN−1)

=

∫
· · ·
∫
d3x1 · · ·xN−1

√
N

∫
d3x̃N φα(x̃N )× ψ̃∗(x1, . . . ,xN−1, x̃N )×

×
√
N

∫
d3xN φ

∗
β(xN )× ψ(x1, . . . ,xN−1,xN ).

(87)

Comparing this formula to the integrals in eq. (84), we see that

〈N, ψ̃| Â(wf)
net |N,ψ〉 =

∑
α,β

Aαβ × 〈N, ψ̃| â†αâβ |N,ψ〉 = 〈N, ψ̃| Â(fs)
net |N,ψ〉 . (88)

This completes the proof of Lemma 4.

Lemma 5: Let Â, B̂, and Ĉ be some one-particle operators, and let Â
(fs)
net , B̂

(fs)
net , and Ĉ

(fs)
net

be the corresponding net one-body operators in the fock space according to eq. (80). For

these operators,

if [Â, B̂] = Ĉ then
[
Â
(fs)
net , B̂

(fs)
net

]
= Ĉ

(fs)
net . (30)

Proof: The Lemma follows from the commutator

[â†αâβ, â
†
γ âδ] = δβ,γ â

†
αâδ − δα,δâ

†
γ âβ (89)
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which you should have calculated in homework set#2, problem 4(a). Indeed, given

Â
(fs)
tot =

∑
α,β

〈α| Â |β〉 â†αâβ (90)

and

B̂
(fs)
tot =

∑
γ,δ

〈γ| B̂ |δ〉 â†γ âδ , (91)

we immediately have[
Â
(fs)
tot , B̂

(fs)
tot

]
=
∑
α,β,γ,δ

〈α| Â |β〉 〈γ| B̂ |δ〉 [â†αâβ, â
†
γ âδ]

〈〈 using eq. (89) 〉〉

=
∑
α,β,γ,δ

〈α| Â |β〉 〈γ| B̂ |δ〉
(
δβ,γ â

†
αâδ − δα,δâ

†
γ âβ

)
=
∑
α,δ

â†αâδ ×
∑
β=γ

〈α| Â |γ〉 〈γ| B̂ |δ〉 −
∑
β,γ

â†γ âβ ×
∑
α=δ

〈γ| B̂ |α〉 〈α| Â |β〉

=
∑
α,δ

â†αâδ 〈α| ÂB̂ |δ〉 −
∑
β,γ

â†γ âβ 〈γ| B̂Â |β〉

〈〈 renaming summation indices 〉〉

=
∑
α,β

â†αâβ ×
(
〈α| ÂB̂ |β〉 − 〈α| B̂Â |β〉

)
=
∑
α,β

â†αâβ × 〈α|
(

[Â, B̂] = Ĉ
)
|β〉 ≡ Ĉ

(fs)
tot .

(92)

This completes the proof of Lemma 5.

Lemma 6: For any two-particle operator B̂, the wave-function-language equation

B̂
(wf)
net =

1

2

i,j=1,...,N∑
i 6=j

B̂(ith and jth particles) (37)

and the Fock-space-language equation

B̂
(fs)
net = 1

2

∑
α,β,γ,δ

(〈α| ⊗ 〈β|)B̂(|γ〉 ⊗ |δ〉) â†αâ
†
β âδâγ . (38)
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define exactly the same net operator B̂net. That is, for any two N–boson states

〈N, ψ̃| B̂(wf)
net |N,ψ〉 = 〈N, ψ̃| B̂(fs)

net |N,ψ〉 for any states 〈N, ψ̃| and |N,ψ〉 . (93)

Proof: This works similarly to the Lemma 4, except for more integrals. Let

Bαβ,γδ =
(
〈α| ⊗ 〈β|

)
B̂2

(
|γ〉 ⊗ |δ〉

)
(94)

be matrix elements of a two-body operator B̂2 between un-symmetrized two-particle states.

Then for generic two-particle states 〈ψ̃| and |ψ〉 — symmetric or not — we have

〈ψ̃| B̂2 |ψ〉 =
∑
α,β,γ,δ

Bαβ,γδ × 〈ψ̃|
(
|α〉 ⊗ |β〉

)
×
(
〈γ| ⊗ 〈δ|

)
|ψ〉

=
∑
α,β,γ,δ

Bαβ,γδ ×
∫∫

d3x̃1 d
3x̃2 ψ̃

∗(x̃1, x̃2)φα(x̃1)φβ(x̃2)

×
∫∫

d3x1 d
3x2 φ

∗
γ(x1)φ

∗
δ(x2)ψ(x1,x2).

(95)

Similarly, in the Hilbert space of N > 2 particles — identical bosons or not — the operator

B̂2 acting on particles #i and #j has matrix elements

〈N, ψ̃| B̂2(i
th, jth) |N,ψ〉 =

=
∑
α,β,γ,δ

Bαβ,γδ ×
∫
· · ·
∫
d3x1 · · · d3xi///// · · · d3xj///// · · · d

3xN∫∫
d3x̃i d

3x̃j ψ̃
∗(x1, . . . , x̃i, . . . , x̃j , . . . ,xN )φα(x̃i)φβ(x̃j)

×
∫∫

d3xi d
3xj φ

∗
γ(xi)φ

∗
δ(xj)ψ(x1, . . . ,xi, . . . ,xj , . . . ,xN )

(96)

For identical bosons — and hence totally symmetric wave-functions ψ and ψ̃ — such matrix

elements do not depend on the choice of particles on which B̂2 acts, so we may just as well
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let i = N − 1 and j = N . Consequently, the net B̂ operator (21) has matrix elements

〈N, ψ̃| B̂(wf)
net |N,ψ〉 =

N(N − 1)

2
× 〈N, ψ̃| B̂2(N − 1, N) |N,ψ〉

=
N(N − 1)

2
×
∑
α,β,γ,δ

Bαβ,γδ × Iαβ,γδ
(97)

where

Iαβ,γδ =

∫
· · ·
∫
d3x1 · · · d3xN−2∫∫

d3x̃N−1 d
3x̃N ψ̃

∗(x1, . . . ,xN−2, x̃N−1, x̃N )φα(x̃N−1)φβ(x̃N )

×
∫∫

d3xN−1 d
3xN φ

∗
γ(xN−1)φ

∗
δ(xN )ψ(x1, . . . ,xN−2,xN−1,xN )

(98)

Now let’s compare these formulae to the Fock space formalism. Applying eq. (20) twice,

we find that the (N − 2)–particle state

∣∣N − 2, ψ′′′
〉

= âδâγ |N,ψ〉 (99)

has wave function

ψ′′′(x1, . . . ,xN−2) =
√
N(N − 1)

∫∫
d3xN−1 d

3xN φ
∗
γ(xN−1)φ

∗
δ(xN )

× ψ(x1, . . . ,xN−2,xN−1,xN ).

(100)

Likewise, the (N − 2)–particle state

∣∣N − 2, ψ̃′′′
〉

= âβ âα |N, ψ̃〉 (101)

has wave function

ψ̃′′′(x1, . . . ,xN−2) =
√
N(N − 1)

∫∫
d3xN−1 d

3xN φ
∗
β(x̃N−1)φ

∗
α(x̃N )

× ψ̃(x1, . . . ,xN−2, x̃N−1, x̃N ).

(102)
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Taking Dirac product of these two states, we obtain

〈N, ψ̃| â†αâ
†
β âδâγ |N,ψ〉 =

〈
N − 2, ψ̃′′′

∣∣ ∣∣N − 2, ψ′′′
〉

=

∫
· · ·
∫
d3x1 · · · d3xN−2 ψ̃′′′∗(x1, . . . ,xN−2)× ψ′′′(x1, . . . ,xN−2)

= N(N − 1)× Iαβ,γδ
(103)

where Iαβ,γδ is exactly the same mega-integral as in eq. (98). Therefore,

〈N, ψ̃| B̂(wf)
net |N,ψ〉 = 1

2

∑
α,β,γ,δ

Bαβ,γδ×〈N, ψ̃| â†αâ
†
β âδâγ |N,ψ〉 = 〈N, ψ̃| B̂(fs)

net |N,ψ〉 (104)

where the second equality follows directly from the eq. (38) for the B̂
(fs)
net operator.

This completes the proof of Lemma 6.

Lemma 7: Let Â be a one-particle operator while B̂ and Ĉ are two-particle operators. Let

Â
(fs)
net , B̂

(fs)
net , and Ĉ

(fs)
net be the corresponding net operators in the Fock space according to

eqs. (80) and (38). For these operators,

if
[(
Â(1st) + Â(2nd)

)
, B̂
]

= Ĉ then
[
Â
(fs)
net , B̂

(fs)
net

]
= Ĉ

(fs)
net . (105)

Proof: Similarly to Lemma 5, this Lemma also follows from a commutator you should have

calculated in homework set#2, problem 4(a), namely

[â†µâν , â
†
αâ
†
β âγ âδ] = δναâ

†
µâ
†
β âγ âδ + δνβ â

†
αâ
†
µâγ âδ − δµγ â

†
αâ
†
β âν âδ − δµδâ

†
αâ
†
β âγ âν . (106)

Indeed, in the Fock space

Â
(fs)
tot =

∑
µnu

〈µ| Â |ν〉 â†µâν (80)

and

B̂
(fs)
tot = 1

2

∑
α,β,γ,δ

〈α⊗ β| B̂ |γ ⊗ δ〉 â†αâ
†
β âγ âδ , (38)

so the commutator
[
Â
(fs)
net , B̂

(fs)
net

]
is a linear combination of the commutators (106). Specifi-
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cally,

[Â
(fs)
tot , B̂

(fs)
tot ] = 1

2

∑
µ,ν,α,β,γ,δ

〈µ| Â |ν〉 〈α⊗ β| B̂ |γ ⊗ δ〉 [â†µâν , â
†
αâ
†
β âγ âδ]

〈〈 using eq. (106) 〉〉

= 1
2

∑
µ,β,γ,δ

â†µâ
†
β âγ âδ ×

∑
ν

〈µ| Â |ν〉 〈ν ⊗ β| B̂ |γ ⊗ δ〉

+ 1
2

∑
α,µ,γ,δ

â†αâ
†
µâγ âδ ×

∑
ν

〈µ| Â |ν〉 〈α⊗ ν| B̂ |γ ⊗ δ〉

− 1
2

∑
α,β,ν,δ

â†αâ
†
β âν âδ ×

∑
µ

〈α⊗ β| B̂ |µ⊗ δ〉 〈µ| Â |ν〉

− 1
2

∑
α,β,γ,ν

â†αâ
†
β âγ âν ×

∑
µ

〈α⊗ β| B̂ |γ ⊗ µ〉 〈µ| Â |ν〉

〈〈 renaming summation indices 〉〉

= 1
2

∑
α,β,γ,δ

â†αâ
†
β âγ âδ × Cα,β,γ,δ ,

(107)

where

Cα,β,γ,δ =
∑
λ

〈α| Â |λ〉 〈λ⊗ β| B̂ |γ ⊗ δ〉 +
∑
λ

〈β| Â |λ〉 〈α⊗ λ| B̂ |γ ⊗ δ〉

−
∑
λ

〈α⊗ β| B̂ |λ⊗ δ〉 〈λ| Â |γ〉 −
∑
λ

〈α⊗ β| B̂ |γ ⊗ λ〉 〈λ| Â |δ〉

= 〈α⊗ β|
(
Â(1st)B̂ + Â(2nd)B̂ − B̂Â(1st) − B̂Â(2nd)

)
|γ ⊗ δ〉

= 〈α⊗ β|
[(
Â(1st) + Â(2nd)

)
, B̂
]
|γ ⊗ δ〉 ≡ 〈α⊗ β| Ĉ |γ ⊗ δ〉 .

(108)

Consequently,
[
Â
(fs)
tot , B̂

(fs)
tot

]
= Ĉ

(fs)
tot .

This completes the proof of Lemma 7
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