1. Let's start with the spin states of a silver atom. As discussed in class, silver atoms have only two independent spin states, so in this problem we are dealing with a two-dimensional Hilbert space. However, measuring the atom's magnetic moment \mathbf{m} in different directions gives us different bases for this Hilbert space: $(|Z+\rangle,|Z-\rangle)$ are states of definite $m_{z}= \pm m_{B}$ (where $m_{B}=e \hbar / 2 M_{e} c$ is the Bohr magneton), $(|X+\rangle,|X-\rangle)$ are states of definite $m_{x}= \pm m_{B},(|Y+\rangle,|Y-\rangle)$ are states of definite $m_{y}= \pm m_{B}$, and likewise for the more general directions of the magnetic moment.

Interpreting the Stern-Gerlach experiments with multiple magnetic gaps in terms of the Born rule of quantum probabilities tells us that

$$
\begin{align*}
& \langle X+\mid X-\rangle=\langle Y+\mid Y-\rangle=\langle Z+\mid Z-\rangle=0 \\
& |\langle Z \pm \mid X \pm\rangle|^{2}=|\langle Z \pm \mid Y \pm\rangle|^{2}=|\langle X \pm \mid Y \pm\rangle|^{2}=\frac{1}{2} \tag{1}
\end{align*}
$$

(a) Use eqs. (1) to show that after a physically-irrelevant change of the overall phases of the ket-vectors $|Z \pm\rangle,|X \pm\rangle$, and $|Y \pm\rangle$, the six quantum states become related to each other as

$$
\begin{equation*}
|X \pm\rangle=\sqrt{\frac{1}{2}}|Z+\rangle \pm \sqrt{\frac{1}{2}}|Z-\rangle, \quad|Y \pm\rangle=\sqrt{\frac{1}{2}}|Z+\rangle \pm i \sqrt{\frac{1}{2}}|Z-\rangle . \tag{2}
\end{equation*}
$$

(b) Construct the operators \hat{m}_{x}, \hat{m}_{y}, and \hat{m}_{z} for the three components of the atom's magnetic moment and use eqs. (2) to write down the matrices of those operators in the $(|Z+\rangle,|Z-\rangle)$ basis.
(c) For an arbitrary direction pointed by a unit vector \mathbf{n}, the $n^{\text {th }}$-component of the atom's magnetic moment is $m_{n}=\mathbf{n} \cdot \mathbf{m}$. Write down the matrix of the the operator $\hat{m}_{n}=n_{x} \hat{m}_{x}+n_{y} \hat{m}_{y}+n_{z} \hat{m}_{z}$ in the $(|Z+\rangle,|Z-\rangle)$ basis. Calculate the eigenvalues of this matrix and explain the physical meaning of your result.
2. Brush up your knowledge of basic complex analysis. Focus on analytic functions $f(z)$ and contour integrals $\int_{\Gamma} f(z) d z$ over generic contours Γ in the complex plane; make sure you understand which deformations of the contour Γ leave the integral invariant and which do not.

If you have never studied complex analysis before, a good introductory textbook is Complex Variables in the Schaum Outlines series, by Spiegel, Lipschutz, Schiller, and Spellman; the PMA library has a few copies. For the purposes of this homework focus on chapter 4; then read the rest of the book when you have time.

As a simple test of your knowledge, make sure you understand why for any complex α with $\operatorname{Re} \alpha>0$ and any complex β,

$$
\begin{equation*}
\int_{\substack{\text { real } \\ \text { axis }}} \exp \left(-\alpha(z-\beta)^{2}\right) d z=\sqrt{\frac{\pi}{\alpha}} \tag{3}
\end{equation*}
$$

where the integration contour is the whole real axis from $-\infty$ to $+\infty$.
3. Consider a one-dimensional quantum particle with a Gaussian wave function

$$
\begin{equation*}
\Psi(x)=C e^{a x^{2}+b x} \tag{4}
\end{equation*}
$$

where a, b and C are some complex numbers. Note that the discussion in class was limited to the case of real $a<0$ but in this exercise we allow for any complex a with $\operatorname{Re} a<0$.
(a) Calculate the norm $\int d x|\Psi(x)|^{2}$ of this wave function.
(b) Calculate the momentum-space wave function $\widetilde{\Psi}(p)$ and show that it also has a Gaussian form

$$
\begin{equation*}
\widetilde{\Psi}(p)=\widetilde{C} e^{\tilde{a} p^{2}+\tilde{b} p} \tag{5}
\end{equation*}
$$

for some parameters \tilde{a}, \tilde{b}, and \widetilde{C}. Write down these parameters as explicit functions of a, b, and C.
(c) Verify that the momentum-space and the coordinate-space wave functions have the same norm.
(d) Calculate the expectation values $\langle x\rangle,\langle p\rangle$ and the uncertainties Δx and Δp.
(e) Show that for any Gaussian wave function $\Delta X \cdot \Delta P \geq \hbar / 2$ and that the equality is achieved whenever a is real.
(f) The Hamiltonian of a free non-relativistic particle is

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 M} \tag{6}
\end{equation*}
$$

so in the momentum space

$$
\begin{equation*}
\hat{H} \widetilde{\Psi}(p)=\frac{p^{2}}{2 M} \times \widetilde{\Psi}(p) \tag{7}
\end{equation*}
$$

Solve the time-dependent Schrödinger equation in the momentum space, and show that if the momentum-space wave function has form (5) at time $t=0$, then it also has form (5) at any time t, albeit for some different parameters $\tilde{a}(t), \tilde{b}(t)$, and $\widetilde{C}(t)$.

Note that this immediately implies that if the coordinate-space wave function has form (4) at time $t=0$, then it has form (4) at any time t, albeit for time-dependent parameters $a(t), b(t)$, and $C(t)$.
(g) Evaluate the time-dependence of the expectation values $\langle x\rangle,\langle p\rangle$ and the uncertainties Δx and Δp and explain the physical meaning of your results.

For simplicity, assume real $a_{0}<0$ at the initial time $t=0$.

