
PHY–389K Homework set #2. Due September 14, 2021.

The same infinite-dimensional Hilbert space can have both discrete and continuous bases.

For example, the Hilbert space of a quantum particle moving in one space dimension has a

continuous position basis {|x〉} and an equally continuous momentum basis {|p〉}. However,

it also may have discrete bases, and the purpose of this homework is to explicitly construct

a discrete basis {|n〉} (n = 0, 1, . . .) for this Hilbert space.

The most common way to construct a basis of a Hilbert space involves eigenstates of some

hermitian operator. In this homework we shall use the Hamiltonian operator of a one-

dimensional harmonic oscillator:

Ĥ =
1

2m
P̂ 2 +

mω2

2
X̂2 (1)

where P̂ and X̂ are respectively the momentum and the position operators.

1. Let’s start by solving the eigenvalue equation Ĥ |n〉 = En |n〉 and writing down the position-

basis wave-functions ψn(x) of the eigenstates |n〉. Our goal in this problem is to show that

En = h̄ω(n+ 1
2) for n = 0, 1, 2, . . . (2)

while

〈x|n〉 = ψn(x) = CnHn(αx) exp(−1
2α

2x2) (3)

where

α =

√
mω

h̄
, (4)

Cn is some normalization factor keeping 〈n|n〉 = 1, and Hn is the nth Hermite polynomial,

to be explained below.

(a) Spell out the eigenvalue equation Ĥ |n〉 = En |n〉 in the coordinate basis, i.e. in terms

of the wave-function ψn(x).

Then verify that the the ground state — with ψo(x) = C0 exp(−1
2α

2x2) since H0 ≡ 1

— indeed obeys the eigenvalue equation for E0 = 1
2 h̄ω.
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The Hermite polynomials Hn(ξ) are defined as

Hn(ξ) = (−1)ne+ξ
2

× dn

dξn
e−ξ

2

. (5)

Each Hn(ξ) is a polynomial of degree n, and it can be recursively constructed using

Hn(ξ) = 1, Hn+1(ξ) = 2ξ ×Hn(ξ) − d

dξ
Hn(ξ). (6)

(b) Verify this recursion relation. Also, let

f (n)(ξ) = (−1)ne−ξ
2

×Hn(x) =
dn

dξn
e−ξ

2

(7)

and prove another recursion relation

f (n+2)(ξ) + 2ξf (n+1)(ξ) + 2(n+ 1)f (n)(ξ) = 0 (8)

by induction in n.

(c) Verify that the wave-functions (3) are indeed eigenfunctions of the Hamiltonian (1) for

the eigenvalues En = h̄ω(n+ 1
2).

Hint: write the wave-functions ψn(x) in terms of f (n)(ξ = αx), rewrite the eigenvalue

equation as a differential equation for the f (n)(ξ), then use Lemma (8).

2. Eigenstates of any hermitian operator that corresponds to different eigenvalues are guaran-

teed to be orthogonal to each other (this is a theorem).

(a) Verify that the quantum states |n〉 described by the wave functions (3) are indeed

orthogonal to each other:

〈n|m〉 ≡
∫
dxΨ∗n(x) Ψm(x) = 0 for any n 6= m. (9)

Hint: Use eq. (5) and the fact that Hn is a polynomial of degree n, so for m > n the

mth derivative of the Hn must vanish.
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(b) Show that the states |n〉 are normalized, i.e. 〈n|n〉 = 1, provided we set

C2
n =

1

2nn!
× α√

π
. (10)

Altogether, the quantum states |n〉, n = 0, 1, . . . form an orthonormal set:

〈n|m〉 ≡
∫
dxΨ∗n(x) Ψm(x) = δn,m , n,m = 0, 1, 2, . . . . (11)

3. As discussed in class, an infinite orthonormal set of vectors in a Hilbert space H does not

necessary make a complete basis. The purpose of this problem is to verify that the basis

{|n〉} constructed in the first problem is indeed complete, that is, that any vector of H is a

linear combination of the |n〉.

(a) Prove another lemma:

Ψn(x) = Cn ×
(−i)n

√
π

αn+1
× exp

(
+1

2α
2x2
)
×

+∞∫
−∞

dk

2π
kn × exp

(
ixk − k2

4α2

)
. (12)

(b) Use the lemma (12) to show that

∞∑
n=0

Ψ∗n(x′)Ψn(x′′) = δ(x′ − x′′). (13)

Hint: Use (12) for both Ψ∗n(x′) and Ψn(x′′) and sum the series before taking the integrals.

Then combine all the exponential factors together, which should give you an expression

of the form exp
(
E1(k′ − k′′) + E2(k′′)

)
. Consequently, change the integration variable

k′ to q = k′ − k′′, which should factorize the double integral into a product of
∫
dq and∫

dk′′, both of which have familiar forms.

3



(c) Finally, show that the formula (13) implies that for any wave-function Φ(x),

∑
n

〈n|Φ〉 Ψn(x) = Φ(x) (14)

and hence for any vector |Φ〉 ∈ H,

∑
n

|n〉 〈n|Φ〉 = |Φ〉 . (15)

In other words, eq. (13) implies that the set {|n〉} (for n = 0, 1, . . .) is a complete basis

of the Hilbert space.
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