The same infinite-dimensional Hilbert space can have both discrete and continuous bases. For example, the Hilbert space of a quantum particle moving in one space dimension has a continuous position basis $\{|x\rangle\}$ and an equally continuous momentum basis $\{|p\rangle\}$. However, it also may have discrete bases, and the purpose of this homework is to explicitly construct a discrete basis $\{|n\rangle\}(n=0,1, \ldots)$ for this Hilbert space.

The most common way to construct a basis of a Hilbert space involves eigenstates of some hermitian operator. In this homework we shall use the Hamiltonian operator of a onedimensional harmonic oscillator:

$$
\begin{equation*}
\hat{H}=\frac{1}{2 m} \hat{P}^{2}+\frac{m \omega^{2}}{2} \hat{X}^{2} \tag{1}
\end{equation*}
$$

where \hat{P} and \hat{X} are respectively the momentum and the position operators.

1. Let's start by solving the eigenvalue equation $\hat{H}|n\rangle=E_{n}|n\rangle$ and writing down the positionbasis wave-functions $\psi_{n}(x)$ of the eigenstates $|n\rangle$. Our goal in this problem is to show that

$$
\begin{equation*}
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) \text { for } n=0,1,2, \ldots \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
\langle x \mid n\rangle=\psi_{n}(x)=C_{n} H_{n}(\alpha x) \exp \left(-\frac{1}{2} \alpha^{2} x^{2}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\sqrt{\frac{m \omega}{\hbar}}, \tag{4}
\end{equation*}
$$

C_{n} is some normalization factor keeping $\langle n \mid n\rangle=1$, and H_{n} is the $n^{\text {th }}$ Hermite polynomial, to be explained below.
(a) Spell out the eigenvalue equation $\hat{H}|n\rangle=E_{n}|n\rangle$ in the coordinate basis, i.e. in terms of the wave-function $\psi_{n}(x)$.
Then verify that the the ground state - with $\psi_{o}(x)=C_{0} \exp \left(-\frac{1}{2} \alpha^{2} x^{2}\right)$ since $H_{0} \equiv 1$ — indeed obeys the eigenvalue equation for $E_{0}=\frac{1}{2} \hbar \omega$.

The Hermite polynomials $H_{n}(\xi)$ are defined as

$$
\begin{equation*}
H_{n}(\xi)=(-1)^{n} e^{+\xi^{2}} \times \frac{d^{n}}{d \xi^{n}} e^{-\xi^{2}} \tag{5}
\end{equation*}
$$

Each $H_{n}(\xi)$ is a polynomial of degree n, and it can be recursively constructed using

$$
\begin{equation*}
H_{n}(\xi)=1, \quad H_{n+1}(\xi)=2 \xi \times H_{n}(\xi)-\frac{d}{d \xi} H_{n}(\xi) \tag{6}
\end{equation*}
$$

(b) Verify this recursion relation. Also, let

$$
\begin{equation*}
f^{(n)}(\xi)=(-1)^{n} e^{-\xi^{2}} \times H_{n}(x)=\frac{d^{n}}{d \xi^{n}} e^{-\xi^{2}} \tag{7}
\end{equation*}
$$

and prove another recursion relation

$$
\begin{equation*}
f^{(n+2)}(\xi)+2 \xi f^{(n+1)}(\xi)+2(n+1) f^{(n)}(\xi)=0 \tag{8}
\end{equation*}
$$

by induction in n.
(c) Verify that the wave-functions (3) are indeed eigenfunctions of the Hamiltonian (1) for the eigenvalues $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$.
Hint: write the wave-functions $\psi_{n}(x)$ in terms of $f^{(n)}(\xi=\alpha x)$, rewrite the eigenvalue equation as a differential equation for the $f^{(n)}(\xi)$, then use Lemma (8).
2. Eigenstates of any hermitian operator that corresponds to different eigenvalues are guaranteed to be orthogonal to each other (this is a theorem).
(a) Verify that the quantum states $|n\rangle$ described by the wave functions (3) are indeed orthogonal to each other:

$$
\begin{equation*}
\langle n \mid m\rangle \equiv \int d x \Psi_{n}^{*}(x) \Psi_{m}(x)=0 \quad \text { for any } n \neq m \tag{9}
\end{equation*}
$$

Hint: Use eq. (5) and the fact that H_{n} is a polynomial of degree n, so for $m>n$ the $m^{\text {th }}$ derivative of the H_{n} must vanish.
(b) Show that the states $|n\rangle$ are normalized, i.e. $\langle n \mid n\rangle=1$, provided we set

$$
\begin{equation*}
C_{n}^{2}=\frac{1}{2^{n} n!} \times \frac{\alpha}{\sqrt{\pi}} . \tag{10}
\end{equation*}
$$

Altogether, the quantum states $|n\rangle, n=0,1, \ldots$ form an orthonormal set:

$$
\begin{equation*}
\langle n \mid m\rangle \equiv \int d x \Psi_{n}^{*}(x) \Psi_{m}(x)=\delta_{n, m}, \quad n, m=0,1,2, \ldots \tag{11}
\end{equation*}
$$

3. As discussed in class, an infinite orthonormal set of vectors in a Hilbert space \mathcal{H} does not necessary make a complete basis. The purpose of this problem is to verify that the basis $\{|n\rangle\}$ constructed in the first problem is indeed complete, that is, that any vector of \mathcal{H} is a linear combination of the $|n\rangle$.
(a) Prove another lemma:

$$
\begin{equation*}
\Psi_{n}(x)=C_{n} \times \frac{(-i)^{n} \sqrt{\pi}}{\alpha^{n+1}} \times \exp \left(+\frac{1}{2} \alpha^{2} x^{2}\right) \times \int_{-\infty}^{+\infty} \frac{d k}{2 \pi} k^{n} \times \exp \left(i x k-\frac{k^{2}}{4 \alpha^{2}}\right) \tag{12}
\end{equation*}
$$

(b) Use the lemma (12) to show that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \Psi_{n}^{*}\left(x^{\prime}\right) \Psi_{n}\left(x^{\prime \prime}\right)=\delta\left(x^{\prime}-x^{\prime \prime}\right) \tag{13}
\end{equation*}
$$

Hint: Use (12) for both $\Psi_{n}^{*}\left(x^{\prime}\right)$ and $\Psi_{n}\left(x^{\prime \prime}\right)$ and sum the series before taking the integrals. Then combine all the exponential factors together, which should give you an expression of the form $\exp \left(\mathcal{E}_{1}\left(k^{\prime}-k^{\prime \prime}\right)+\mathcal{E}_{2}\left(k^{\prime \prime}\right)\right)$. Consequently, change the integration variable k^{\prime} to $q=k^{\prime}-k^{\prime \prime}$, which should factorize the double integral into a product of $\int d q$ and $\int d k^{\prime \prime}$, both of which have familiar forms.
(c) Finally, show that the formula (13) implies that for any wave-function $\Phi(x)$,

$$
\begin{equation*}
\sum_{n}\langle n \mid \Phi\rangle \Psi_{n}(x)=\Phi(x) \tag{14}
\end{equation*}
$$

and hence for any vector $|\Phi\rangle \in \mathcal{H}$,

$$
\begin{equation*}
\sum_{n}|n\rangle\langle n \mid \Phi\rangle=|\Phi\rangle \tag{15}
\end{equation*}
$$

In other words, eq. (13) implies that the set $\{|n\rangle\}$ (for $n=0,1, \ldots$) is a complete basis of the Hilbert space.

