1. Consider the spin states of an electron (or a spin $\frac{1}{2}$ atom, such as silver). The spin is a vector (in 3-d sense) $\hat{\mathbf{S}}$ whose components are operators ($\hat{S}_{x}, \hat{S}_{y} \hat{S}_{z}$). In the standard basis of the Hilberst space of spin states, the matrices of these components are $S_{i}=(\hbar / 2) \sigma_{i}$ (for $i=x, y, z)$ where the σ_{i} are the Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \text { and } \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(a) Verify that the Pauli matrices and hence the $\hat{\sigma}_{i}$ operators obey

$$
\begin{equation*}
\sigma_{i} \sigma_{j}=\delta_{i j} I+i \epsilon_{i j k} \sigma_{k} \tag{2}
\end{equation*}
$$

where I is the unit matrix, $\epsilon_{i j k}$ is the 3 d Levi-Civita antisymmetric tensor, and the repeated index k is summed over.

* Warning: If your index-handling skills are rusty, please hone them up in a hurry. Future homeworks will have 3-d space indices in truckloads.
(b) Suppose the 3 components v_{i} of some 3-vector \mathbf{v} commute with each other and also with all the Pauli matrices. Show that in this case $(\mathbf{v} \cdot \vec{\sigma})^{2}=\mathbf{v}^{2} I$.
(c) Calculate $\exp (\mathbf{v} \cdot \vec{\sigma})$ under the assumptions of part (b).

Consider an electron in a uniform magnetic field B. For simplicity, let's ignore on the electron's motion and focus on its spin degrees of freedom. The electron has magnetic moment $\mathbf{m}=-\left(e / M_{e} c\right) \mathbf{S}$ (Gauss units) - or in terms of the Bohr magneton $m_{B}=e \hbar / 2 M_{e} c$, $\mathbf{m}=-m_{B} \vec{\sigma},-$ so in the uniform magnetic field it has spin Hamiltonian

$$
\begin{equation*}
\hat{H}=-\mathbf{B} \cdot \hat{\mathbf{m}}=+m_{B} \mathbf{B} \cdot \overrightarrow{\hat{\sigma}} . \tag{3}
\end{equation*}
$$

(d) Show that the time evolution operator for the electron's spin is

$$
\begin{equation*}
\hat{U}\left(t, t_{0}\right)=\cos \frac{\omega\left(t-t_{0}\right)}{2} \hat{I}-i \sin \frac{\omega\left(t-t_{0}\right)}{2}(\mathbf{n} \cdot \overrightarrow{\hat{\sigma}}) \tag{4}
\end{equation*}
$$

where $\omega=\left(e B / M_{e} c\right)$ is the classical precession frequency of the magnetic moment and \mathbf{n} is the unit vector in the direction of the magnetic field.
(e) Given an arbitrary initial quantum state $\left|\Psi\left(t_{0}\right)\right\rangle$, compute the expectation value of the magnetic moment for all future times and show that it processes with the classical frequency ω around the magnetic field's direction. For simplicity, assume that direction to be the z axis.
2. Consider three hermitian operators \hat{H}, \hat{A}_{1}, and \hat{A}_{2} such that

$$
\begin{equation*}
\left[\hat{H}, \hat{A}_{1}\right]=0, \quad\left[\hat{H}, \hat{A}_{2}\right]=0, \quad \text { but } \quad\left[\hat{A}_{1}, \hat{A}_{2}\right] \neq 0 \tag{5}
\end{equation*}
$$

(a) Show that the eigenvalue spectrum of \hat{H} must be degenerate.
(b) Can some of the eigenvalues of \hat{H} be non-degenerate? What is a necessary condition (in terms of $\left.i\left[\hat{A}_{1}, \hat{A}_{2}\right]\right)$ for this to happen?
(c) Consider a three-dimensional Hilbert space. Suppose in some orthonormal basis \hat{H} has diagonal matrix

$$
H=\left(\begin{array}{ccc}
h_{1} & 0 & 0 \tag{6}\\
0 & h_{2} & 0 \\
0 & 0 & h_{3}
\end{array}\right) \quad \text { with } h_{1}=h_{2} \neq h_{3} .
$$

Give an example of operators \hat{A}_{1} and \hat{A}_{2} - or rather, of their matrices in the same basis - which both commute with the \hat{H} but do not commute with each other.
3. The commutator bracket $[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}$ has several important algebraic properties. Two of them - the antisymmetry $[\hat{A}, \hat{B}]=-[\hat{B}, \hat{A}]$ and the bi-linearity with respect to both \hat{A} and \hat{B}, - are quite obvious from the definition of the commutator. Your task in this problem is to prove two non-so-obvious properties, namely the Leibniz rules

$$
\begin{align*}
{[\hat{A}, \hat{B} \hat{C}] } & =[\hat{A}, \hat{B}] \hat{C}+\hat{B}[\hat{A}, \hat{C}] \\
{[\hat{A} \hat{B}, \hat{C}] } & =\hat{A}[\hat{B}, \hat{C}]+[\hat{A}, \hat{C}] \hat{B} \tag{7}
\end{align*}
$$

and the Jacobi identity

$$
\begin{equation*}
[\hat{A},[\hat{B}, \hat{C}]]+[\hat{B},[\hat{C}, \hat{A}]]+[\hat{C},[\hat{A}, \hat{B}]]=0 \tag{8}
\end{equation*}
$$

4. Finally, a harder exercise in the commutator algebra. Suppose two operators \hat{X} and \hat{P} are Hermitian and the commutator $[\hat{X}, \hat{P}]=i \hbar$, but make no assumptions about the physical nature of these operators. Using nothing but the commutator $[\hat{X}, \hat{P}]$ and the Hermiticity of \hat{X} and \hat{P}, prove the following:
(a) For any analytic function $f(P)$,

$$
\begin{equation*}
[\hat{X}, f(\hat{P})]=i \hbar f^{\prime}(\hat{P}) \quad \text { where } \quad f^{\prime}(p)=\frac{d f}{d p} \tag{9}
\end{equation*}
$$

Hint: decompose $f(\hat{P})$ into a power series in \hat{P}.
(b) Likewise, for any analytic function $g(X)$,

$$
\begin{equation*}
[g(\hat{X}), \hat{P}]=i \hbar g^{\prime}(\hat{X}) \quad \text { where } \quad g^{\prime}(x)=\frac{d g}{d x} \tag{10}
\end{equation*}
$$

(c) Show that $\hat{P} \times e^{i k \hat{X}}=e^{i k \hat{X}} \times(\hat{P}+k \hbar)$ and $\hat{X} \times e^{i \lambda \hat{P}}=e^{i \lambda \hat{P}} \times(\hat{X}-\lambda \hbar)$.
(d) For any analytic functions $f(\hat{P})$ and $g(\hat{X})$,

$$
\begin{equation*}
e^{-i k \hat{X}} f(\hat{P}) e^{i k \hat{X}}=f(\hat{P}+k \hbar) \quad \text { and } \quad e^{-i \lambda \hat{P}} g(\hat{X}) e^{i \lambda \hat{P}}=g(\hat{X}-\lambda \hbar) \tag{11}
\end{equation*}
$$

(e) Show that for any two eigenstates $\left|x_{1}\right\rangle$ and $\left|x_{2}\right\rangle$ of \hat{X},

$$
\begin{equation*}
\left\langle x_{1}\right| e^{-i \lambda \hat{P}}\left|x_{2}\right\rangle=0 \quad \text { unless } \quad x_{1}-x_{2}=\lambda \hbar \tag{12}
\end{equation*}
$$

Hint: compute $\left\langle x_{1}\right|\left[\hat{X}, e^{-i \lambda \hat{P}}\right]\left|x_{2}\right\rangle$.
Now suppose \hat{X} is a position operator in 1 dimension. The result of part (e) shows that $\exp (-i a \hat{P} / \hbar)$ is the translation operator which moves a state localized at $X=x$ into the state localized at $X=x+a$.
(f) Suppose the phases of the position eigenstates $|x\rangle$ are chosen such that

$$
\begin{equation*}
\left\langle x_{1}\right| \exp (-i a \hat{P} / \hbar)\left|x_{2}\right\rangle=\delta\left(x_{1}-x_{2}-a\right) \tag{13}
\end{equation*}
$$

Show that in such a position basis, the \hat{P} operator acts on the wavefunctions as the usual momentum operator,

$$
\begin{equation*}
\langle x| \hat{P}|\Psi\rangle=-i \hbar \frac{d}{d x}\langle x \mid \Psi\rangle, \quad \text { i.e., } \quad \hat{P} \psi(x)-i \hbar \frac{d}{d x} \psi(x) . \tag{14}
\end{equation*}
$$

