PHY-389K Homework set #4. Due September 28, 2021.

. Consider the evolution operator U (t,to) of a quantum particle. The coordinate-basis matrix

of this operator
Uxi,ti;%0.t0) = (x1|Ult1,to) [x0) (1)

is called the evolution kernel or the propagation amplitude from xg to x7 in time ¢; —ty. This

kernel describes the time evolution of the particle’s wave-function as

Y(x1,t1) = /d?’XOU(Xl;tl%XOatO) X (%0, o). (2)

Now consider a free non-relativistic spinless particle with Hamiltonian
A2

2M

(a) Show that the evolution kernel for this particle is

M 3/2 i m(x1 — xq)?
U(x1,t1;X0,t0) = (m) X €xp (ﬁ m) : (4)

(b) Spell out the unitarity conditions UTU = UUT = 1 in terms of the evolution kernel (1),
specifically in terms of integrals of the form [d3xU*(--)U(-- ).

(¢) Now verify these conditions by explicit integration.

. A classical charged particle in a magnetic field has canonical momentum
_ Q
P = mv + z A(Xparticle) (5)

which is quite different from the usual kinematic momentum © = mv, and its classical
Hamiltonian is
)
T 1 Q
Hoxp) = = o (v - Zam) )

2m 2m c

In quantum mechanics, it’s the canonical momentum operators p; (i = x,y, z) which obeys



the usual commutation relations

so in the coordinate basis they act as p;y(x) = —ih(0/0x;)1(x). On the other hand, the

kinematic momenta
Ty = Di — _AZ<£.7?J>’§> (8)

act in a more complicated fashion and obey more complicated commutation relations

) ihQ

[Zi,25] = 0, [#, 7] = ihdyy, [T, 7] = TﬁzjkBk(i",@,é)- (9)

Finally, the Hamiltonian operator H follows from the classical Hamiltonian (6) as

2
- T 1 . N
H = - = o—(pb— AX)". (10)

(a) Unless you have attended my extra lecture on September 9, read the parts of my notes
on classical mechanics and canonical quantization where I explain egs. (5) through (10).
Specifically, pages 57 where I explain the classical mechanics of a charged particle, and

pages 8-9 where I explain the commutation relations.

(b) Use the commutation relations (9) to derive the Ehrenfest equations for the quantum

charged particle. Specifically, show that

%(&>:%<7¥> and %<7¥>:2—mc<7?><f3—f3><7¥> (11)

where B ¥ B(#, 3, 2).


http://www.ph.utexas.edu/~vadim/Classes/2021f/canonical.pdf
http://www.ph.utexas.edu/~vadim/Classes/2021f/canonical.pdf

(¢) Now let’s subject the particle to both electric and magnetic fields and allow both fields

to be time-dependent, thus time-dependent Hamiltonian

P — Ax,1)? (12)

%<&>:%<7¥> and %<§>:Q<E>+i<%{x]§—1§x§>. (13)

Hint: use Heisenberg—Dirac equations for the time-dependent operators, and remember
that in a time-dependent vector potential A(x, t), the kinematic momentum operator (8)

becomes explicitly time-dependent,

7= == (k1) (14)

3. Finally, a refresher of undergraduate-level theory of orbital angular momentum

¢ def ~ . ~  def A
L = xxp, i.e, Li = €Dy . (15)

It is also a good drill for the use of the canonical commutation relations
[, 251 =0, [pi,pj] =0, [2i,p;] = ilidy; . (16)

Without using coordinate-basis or any other wave functions, use the relations (16) to show

that:

A

)
b) [bi, Lj] = ihe;jupr;
(c) [Li, j}]] = iheijkf)k and therefore L x L = iiL;
)

(d) [p% L] = 0 = [f(#), L] for any function f of the radius 7 = (%2)!/2;



(e) [L, L2 =0;
(f) p? =p2 + #7212, where p, dof %{g,ﬁz} (note: p, so defined is hermitian).
Now, let us make use of the coordinate-basis wave functions.

(g) Given a wave-function U(r, 0, ¢) = (r,0,¢|¥) in the spherical-coordinate basis, compute
(r,0, | pr |¥) and (r,0, 6| 7 [¥).

(h) Finally, use the above results to calculate (r, 6, ¢| L?|0).
Hint: In the coordinate basis p? = —h2V2; look up in any E&M textbook how the

Laplacian V2 acts in spherical coordinates, then use (f) and (g).



