1. Consider the evolution operator $\hat{U}\left(t, t_{0}\right)$ of a quantum particle. The coordinate-basis matrix of this operator

$$
\begin{equation*}
U\left(\mathbf{x}_{1}, t_{1} ; \mathbf{x}_{0}, t_{0}\right)=\left\langle\mathbf{x}_{1}\right| \hat{U}\left(t_{1}, t_{0}\right)\left|\mathbf{x}_{0}\right\rangle \tag{1}
\end{equation*}
$$

is called the evolution kernel or the propagation amplitude from \mathbf{x}_{0} to \mathbf{x}_{1} in time $t_{1}-t_{0}$. This kernel describes the time evolution of the particle's wave-function as

$$
\begin{equation*}
\psi\left(\mathbf{x}_{1}, t_{1}\right)=\int d^{3} \mathbf{x}_{0} U\left(\mathbf{x}_{1}, t_{1} ; \mathbf{x}_{0}, t_{0}\right) \times \psi\left(\mathbf{x}_{0}, t_{0}\right) \tag{2}
\end{equation*}
$$

Now consider a free non-relativistic spinless particle with Hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{\hat{\mathbf{p}}^{2}}{2 M} \tag{3}
\end{equation*}
$$

(a) Show that the evolution kernel for this particle is

$$
\begin{equation*}
U\left(\mathbf{x}_{1}, t_{1} ; \mathbf{x}_{0}, t_{0}\right)=\left(\frac{M}{2 \pi i \hbar\left(t_{1}-t_{0}\right)}\right)^{3 / 2} \times \exp \left(\frac{i}{\hbar} \frac{m\left(\mathbf{x}_{1}-\mathbf{x}_{0}\right)^{2}}{2\left(t_{1}-t_{0}\right)}\right) \tag{4}
\end{equation*}
$$

(b) Spell out the unitarity conditions $\hat{U}^{\dagger} \hat{U}=\hat{U} \hat{U}^{\dagger}=1$ in terms of the evolution kernel (1), specifically in terms of integrals of the form $\int d^{3} \mathbf{x} U^{*}(\cdots) U(\cdots)$.
(c) Now verify these conditions by explicit integration.
2. A classical charged particle in a magnetic field has canonical momentum

$$
\begin{equation*}
\mathbf{p}=m \mathbf{v}+\frac{Q}{c} \mathbf{A}\left(\mathbf{x}_{\text {particle }}\right) \tag{5}
\end{equation*}
$$

which is quite different from the usual kinematic momentum $\vec{\pi}=m \mathbf{v}$, and its classical Hamiltonian is

$$
\begin{equation*}
H(\mathbf{x}, \mathbf{p})=\frac{\vec{\pi}^{2}}{2 m}=\frac{1}{2 m}\left(\mathbf{p}-\frac{Q}{c} \mathbf{A}(\mathbf{x})\right) \tag{6}
\end{equation*}
$$

In quantum mechanics, it's the canonical momentum operators $\hat{p}_{i}(i=x, y, z)$ which obeys
the usual commutation relations

$$
\begin{equation*}
\left[\hat{x}_{i}, \hat{x}_{j}\right]=0, \quad\left[\hat{p}_{i}, \hat{p}_{j}\right]=0, \quad\left[\hat{x}_{i}, \hat{p}_{j}\right]=i \hbar \delta_{i j} \tag{7}
\end{equation*}
$$

so in the coordinate basis they act as $\hat{p}_{i} \psi(\mathbf{x})=-i \hbar\left(\partial / \partial x_{i}\right) \psi(\mathbf{x})$. On the other hand, the kinematic momenta

$$
\begin{equation*}
\hat{\pi}_{i} \stackrel{\text { def }}{=} \hat{p}_{i}-\frac{Q}{c} A_{i}(\hat{x}, \hat{y}, \hat{z}) \tag{8}
\end{equation*}
$$

act in a more complicated fashion and obey more complicated commutation relations

$$
\begin{equation*}
\left[\hat{x}_{i}, \hat{x}_{j}\right]=0, \quad\left[\hat{x}_{i}, \hat{\pi}_{j}\right]=i \hbar \delta_{i j}, \quad\left[\hat{\pi}_{i}, \hat{\pi}_{j}\right]=\frac{i \hbar Q}{c} \epsilon_{i j k} B_{k}(\hat{x}, \hat{y}, \hat{z}) \tag{9}
\end{equation*}
$$

Finally, the Hamiltonian operator \hat{H} follows from the classical Hamiltonian (6) as

$$
\begin{equation*}
\hat{H}=\frac{\overrightarrow{\boldsymbol{\pi}}^{2}}{2 m}=\frac{1}{2 m}(\hat{\mathbf{p}}-\mathbf{A}(\hat{\mathbf{x}}))^{2} \tag{10}
\end{equation*}
$$

(a) Unless you have attended my extra lecture on September 9, read the parts of my notes on classical mechanics and canonical quantization where I explain eqs. (5) through (10). Specifically, pages 5-7 where I explain the classical mechanics of a charged particle, and pages 8-9 where I explain the commutation relations.
(b) Use the commutation relations (9) to derive the Ehrenfest equations for the quantum charged particle. Specifically, show that

$$
\begin{equation*}
\frac{d}{d t}\langle\hat{\mathbf{x}}\rangle=\frac{1}{m}\langle\overrightarrow{\hat{\pi}}\rangle \quad \text { and } \quad \frac{d}{d t}\langle\overrightarrow{\hat{\pi}}\rangle=\frac{Q}{2 m c}\langle\overrightarrow{\hat{\pi}} \times \hat{\mathbf{B}}-\hat{\mathbf{B}} \times \overrightarrow{\hat{\pi}}\rangle \tag{11}
\end{equation*}
$$

where $\hat{\mathbf{B}} \stackrel{\text { def }}{=} \mathbf{B}(\hat{x}, \hat{y}, \hat{z})$.
(c) Now let's subject the particle to both electric and magnetic fields and allow both fields to be time-dependent, thus time-dependent Hamiltonian

$$
\begin{equation*}
\hat{H}(t)=Q \Phi(\hat{\mathbf{x}}, t)+\frac{1}{2 m}(\hat{\mathbf{p}}-\mathbf{A}(\hat{\mathbf{x}}, t))^{2} \tag{12}
\end{equation*}
$$

Show that in this case, the Ehrenfest equations become

$$
\begin{equation*}
\frac{d}{d t}\langle\hat{\mathbf{x}}\rangle=\frac{1}{m}\langle\vec{\pi}\rangle \quad \text { and } \quad \frac{d}{d t}\langle\vec{\pi}\rangle=Q\langle\hat{\mathbf{E}}\rangle+\frac{Q}{2 m c}\langle\overrightarrow{\hat{\pi}} \times \hat{\mathbf{B}}-\hat{\mathbf{B}} \times \overrightarrow{\hat{\pi}}\rangle . \tag{13}
\end{equation*}
$$

Hint: use Heisenberg-Dirac equations for the time-dependent operators, and remember that in a time-dependent vector potential $\mathbf{A}(\mathbf{x}, t)$, the kinematic momentum operator (8) becomes explicitly time-dependent,

$$
\begin{equation*}
\frac{\partial}{\partial t} \overrightarrow{\hat{\pi}}=-\frac{Q}{c} \frac{\partial \mathbf{A}}{\partial t}(\hat{\mathbf{x}}, t) . \tag{14}
\end{equation*}
$$

3. Finally, a refresher of undergraduate-level theory of orbital angular momentum

$$
\begin{equation*}
\hat{\mathbf{L}} \stackrel{\text { def }}{=} \hat{\mathbf{x}} \times \hat{\mathbf{p}}, \quad \text { i. e., } \hat{L}_{i} \stackrel{\text { def }}{=} \epsilon_{i j k} \hat{x}_{j} \hat{p}_{k} \tag{15}
\end{equation*}
$$

It is also a good drill for the use of the canonical commutation relations

$$
\begin{equation*}
\left[\hat{x}_{i}, \hat{x}_{j}\right]=0, \quad\left[\hat{p}_{i}, \hat{p}_{j}\right]=0, \quad\left[\hat{x}_{i}, \hat{p}_{j}\right]=i \hbar \delta_{i j} \tag{16}
\end{equation*}
$$

Without using coordinate-basis or any other wave functions, use the relations (16) to show that:
(a) $\left[\hat{x}_{i}, \hat{L}_{j}\right]=i \hbar \epsilon_{i j k} \hat{x}_{k}$;
(b) $\left[\hat{p}_{i}, \hat{L}_{j}\right]=i \hbar \epsilon_{i j k} \hat{p}_{k}$;
(c) $\left[\hat{L}_{i}, \hat{L}_{j}\right]=i \hbar \epsilon_{i j k} \hat{L}_{k}$ and therefore $\hat{\mathbf{L}} \times \hat{\mathbf{L}}=i \hbar \hat{\mathbf{L}}$;
(d) $\left[\hat{\mathbf{p}}^{2}, \hat{\mathbf{L}}\right]=0=[f(\hat{r}), \hat{\mathbf{L}}]$ for any function f of the radius $\hat{r}=\left(\hat{\mathbf{x}}^{2}\right)^{1 / 2}$;
(e) $\left[\hat{\mathbf{L}}, \hat{\mathbf{L}}^{2}\right]=0$;
(f) $\hat{\mathbf{p}}^{2}=\hat{p}_{r}^{2}+\hat{r}^{-2} \hat{\mathbf{L}}^{2}$, where $\hat{p}_{r} \xlongequal{\text { def }} \frac{1}{2}\left\{\frac{\widehat{x}_{i}}{r}, \hat{p}_{i}\right\}$ (note: \hat{p}_{r} so defined is hermitian).

Now, let us make use of the coordinate-basis wave functions.
(g) Given a wave-function $\Psi(r, \theta, \phi)=\langle r, \theta, \phi \mid \Psi\rangle$ in the spherical-coordinate basis, compute $\langle r, \theta, \phi| \hat{p}_{r}|\Psi\rangle$ and $\langle r, \theta, \phi| \hat{p}_{r}^{2}|\Psi\rangle$.
(h) Finally, use the above results to calculate $\langle r, \theta, \phi| \hat{\mathbf{L}}^{2}|\Psi\rangle$.

Hint: In the coordinate basis $\hat{\mathbf{p}}^{2}=-\hbar^{2} \nabla^{2}$; look up in any E\&M textbook how the Laplacian ∇^{2} acts in spherical coordinates, then use (f) and (g).

