1. Consider a spinless charged particle in a uniform magnetic field B. For simplicity, assume that the particle is free to move in the $x y$ plane \perp to the magnetic field's direction, but in the z direction along the field. As we saw in the previous homework (set\#4, problem 2), the Hamiltonian operator for this particle is

$$
\begin{equation*}
\hat{H}=\frac{\hat{\pi}_{x}^{2}+\hat{\pi}_{y}^{2}}{2 M} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
{[\hat{x}, \hat{y}] } & =0 \\
{\left[\hat{x}_{i}, \hat{\pi}_{i}\right] } & =i \hbar \delta_{i j} \quad(\text { for } i, j=x, y), \tag{2}\\
{\left[\hat{\pi}_{x}, \hat{\pi}_{y}\right] } & =i \frac{Q B \hbar}{c}
\end{align*}
$$

(a) Let

$$
\begin{equation*}
\hat{a}=\sqrt{\frac{c}{2 \hbar|Q B|}}\left(\hat{\pi}_{x}+i \operatorname{sign}(Q B) \hat{\pi}_{y}\right) \tag{3}
\end{equation*}
$$

and show that this non-Hermitian operator obeys $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$.
(b) Rewrite the Hamiltonian (1) in terms of the \hat{a} and \hat{a}^{\dagger} operators, then show that its spectrum consists of discrete Landau levels

$$
\begin{equation*}
E_{n}=\hbar \Omega\left(n+\frac{1}{2}\right), \quad n=0,1,2, \ldots \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega=\frac{|Q B|}{M c} \tag{5}
\end{equation*}
$$

is the classical cyclotron frequency of the particle moving in a Larmor circle in the magnetic field.
(c) Show that for a classical particle moving in a Larmor circle, the circle's center is located at

$$
\begin{equation*}
x_{c}=x+\frac{c}{Q B} \pi_{y}, \quad y_{c}=y-\frac{c}{Q B} \pi_{x} \tag{6}
\end{equation*}
$$

(d) Show that the quantum analogues \hat{x}_{c} and \hat{y}_{c} of the center's coordinate commute with both $\hat{\pi}_{x}$ and $\hat{\pi}_{y}$ and hence with the Hamiltonian \hat{H}. In other words, both \hat{x}_{c} and \hat{y}_{c} are conserved operators.
(e) Show that the \hat{x}_{c} and \hat{y}_{c} do not commute with each other; instead

$$
\begin{equation*}
\left[\hat{x}_{c}, \hat{y}_{c}\right]=\frac{-i \hbar c}{Q B} . \tag{7}
\end{equation*}
$$

(f) Use the commutator (7) to show that each Landau energy level is infinitely degenerate. Hint: build Harmonic-oscillator-like operators \hat{b} and \hat{b}^{\dagger} with $\left[\hat{b}, \hat{b}^{\dagger}\right]=1$ from \hat{x}_{c} and \hat{y}_{c}, then show that an entire infinite tower of oscillator-like states must exist at every Landau level.
2. Now let's learn about the coherent states of a harmonic oscillator.
(a) First, a lemma about functions of \hat{a} or \hat{a}^{\dagger} operators. Let $f(\xi)$ be any analytic function of a complex number ξ and $f^{\prime}(x)=d f / d \xi$ its derivative. Show that

$$
\begin{equation*}
\left[\hat{a}, f\left(\hat{a}^{\dagger}\right)\right]=f^{\prime}\left(\hat{a}^{\dagger}\right) \quad \text { and } \quad\left[\hat{a}^{\dagger}, f(\hat{a})\right]=-f^{\prime}(\hat{a}) \tag{8}
\end{equation*}
$$

Next, for any complex number ξ we define the coherent state $|\xi\rangle$ as

$$
\begin{equation*}
|\xi\rangle \stackrel{\text { def }}{=} e^{-|\xi|^{2} / 2} \exp \left(\xi \hat{a}^{\dagger}\right)|0\rangle \tag{9}
\end{equation*}
$$

where $|0\rangle=|n=0\rangle$ is the oscillator's ground state.
(b) Calculate $\langle n \mid \xi\rangle$ for all $n=0,1,2 \ldots$, then show that the state (9) is normalized, i.e. $\langle\xi \mid \xi\rangle=1$.

The operators \hat{a} and \hat{a}^{\dagger} cannot be diagonalized. However, \hat{a} has and eigen-ket for any complex eigenvalue while \hat{a}^{\dagger} has an eigen-bra for any complex eigenvalue. On the other hand, \hat{a}^{\dagger} has no eigen-kets at all, while \hat{a} has no eigen-bras.
(c) Show that the coherent state $|\xi\rangle$ is the eigen-ket of \hat{a} for the eigenvalue ξ; likewise, $\langle\xi|$ is an eigen-bra of \hat{a}^{\dagger} for the eigenvalue ξ^{*} :

$$
\begin{equation*}
\hat{a}|\xi\rangle=\xi|\xi\rangle, \quad\langle\xi| \hat{a}^{\dagger}=\xi^{*}\langle\xi| . \tag{10}
\end{equation*}
$$

Hint: use part (a) to show that $\hat{a} \exp \left(\xi \hat{a}^{\dagger}\right)=\exp \left(\xi \hat{a}^{\dagger}\right)(\hat{a}+\xi)$, then apply both sides of this equation to $|0\rangle$.
(d) Show that \hat{a}^{\dagger} has no eigen-kets for any complex eigenvalues while \hat{a} has no eigen-bras. Hint: show that if $\hat{a}^{\dagger}|\psi\rangle=\lambda|\psi\rangle$ then $|\psi\rangle$ is un-normalizable because $|\langle n \mid \psi\rangle|^{2}$ increases with n.

Coming back to the coherent states, in any coherent state ξ, the expectation value of any normal-ordered product of raising and lowering operators - i.e., a product $\left(\hat{a}^{\dagger}\right)^{m}(\hat{a})^{n}$ in which all raising operators are to the left of all the lowering operators - is simply

$$
\begin{equation*}
\langle\xi|\left(\hat{a}^{\dagger}\right)^{m}(\hat{a})^{n}|\xi\rangle=\xi^{* m} \xi^{n} . \tag{11}
\end{equation*}
$$

(e) Prove this.

A coherent state $|\xi\rangle$ does not have a definite energy (except for $\xi=0$). However, for the highly excited coherent state with $\langle E\rangle \gg \hbar \omega$, the relative energy uncertainty becomes small, $\Delta E \ll\langle E\rangle$.
(f) Calculate $\langle E\rangle$ and ΔE in a coherent state ξ.

Hint: prove and use $\hat{n}^{2}=\left(\hat{a}^{\dagger}\right)^{2}(\hat{a})^{2}+\hat{n}$, then use eq. (11).
Since the operator \hat{a} is not Hermitian, its eigen-kets are not orthogonal to each other. Nevertheless, the overlap between 2 coherent states $|\xi\rangle$ and $|\eta\rangle$ becomes exponentially small for large $|\xi-\eta|$.
(g) Calculate the overlap and show that $|\langle\eta \mid \xi\rangle|^{2}=\exp \left(-|\xi-\eta|^{2}\right)$.
(h) Finally, show that the set of all the coherent states $|\xi\rangle$ (for all complex ξ) forms an over-complete basis of the harmonic oscillator's Hilbert space,

$$
\begin{equation*}
\int \frac{d^{2} \xi}{\pi}|\xi\rangle\langle\xi|=\hat{1} \tag{12}
\end{equation*}
$$

where $d^{2} \xi=d(\Re \xi) d(\Im \xi)=|\xi| d(|\xi|) d(\arg \xi)$.
Hint: calculate the matrix elements $\langle m|$ integral (12) $|n\rangle$.
3. Finally, consider the dynamics of coherent states. If the initial state of a harmonic oscillator is coherent, then it remain a coherent state at all future times, but for a time-dependent $\xi(t)$, namely

$$
\begin{equation*}
\xi(t)=\xi_{0} \times e^{-i \omega t} . \tag{13}
\end{equation*}
$$

(a) Show that the state

$$
\begin{equation*}
|\psi\rangle(t)=e^{-i \omega t / 2}|\xi(t)\rangle \tag{14}
\end{equation*}
$$

where $\xi(t)$ evolves according to eq. (13) obeys the Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{d}{d t}|\psi\rangle(t)=\hat{H}|\psi\rangle(t) \tag{15}
\end{equation*}
$$

(b) Calculate the expectation values $\langle\hat{q}\rangle$ and $\langle\hat{p}\rangle$ of the position and momentum in a coherent state ξ. Then show that when $\xi(t)$ evolves according to eq. (13), these expectation values obey the classical equations of motion.
(c) Calculate the uncertainties Δq and Δp in a coherent state and show that $\Delta q \times \Delta p=\frac{1}{2} \hbar$, the minimum allowed by the Heisenberg's uncertainty principle.

In an earlier homework set\#1 we saw that that the Heisenberg bound is saturated by the Gaussian wave packets (with real coefficients of $-x^{2}$ in the exponent). The coherent state also saturate this bound because they are Gaussian wave packets of this kind.
(d) Solve the equation $(\hat{a}-\xi)|\psi\rangle$ in the coordinate basis and show that the solution is indeed the Gaussian wave packet

$$
\begin{equation*}
\psi(q)=C \times \exp \left(-\frac{m \omega}{2 \hbar} \times(q-\bar{q})^{2}+\frac{i \bar{p}}{\hbar} \times q\right) \tag{16}
\end{equation*}
$$

where $\bar{q}=\langle\xi| \hat{q}|\xi\rangle, \bar{p}=\langle\xi| \hat{p}|\xi\rangle$, and C is a constant overall factor.
Note: the magnitude of the constant C obtains from the normalization condition $\langle\psi \mid \psi\rangle=$ 1 , but determining the phase of C takes extra information, for example requiring $|\psi\rangle=$ $|\xi\rangle$ having exactly the same overall phase as in eq. (9). The correct answer is

$$
\begin{equation*}
C=\sqrt[4]{\frac{m \omega}{\pi \hbar}} \times e^{-i \bar{p} \bar{q} / 2 \hbar} \tag{17}
\end{equation*}
$$

but deriving this formula is not a part of this homework assignment.
The bottom line is, the best way to see the near-classical oscillations in quantum mechanics is to look at the coherent states $|\xi\rangle$ with $\xi(t)=\xi_{0} e^{i \omega t}$. These states provide for minimal uncertainties Δq and δp while the expectation values $\langle q\rangle(t)$ and $\langle p\rangle(t)$ oscillate in a classical manner. Also, while the coherent states do not have definite energies, the relative energy uncertainty becomes small for the highly excited states (cf. problem 2(e)).

By comparison, the stationary states $|n\rangle$ do not show any classical-like motion. Indeed, not only there is no motion at all in a stationary state, but also

$$
\begin{equation*}
\langle n| \hat{q}|n\rangle=\langle n| \hat{p}|n\rangle=0 \tag{18}
\end{equation*}
$$

while the uncertainties grow with n :

$$
\begin{equation*}
(\Delta q)^{2}=\frac{\hbar}{2 m \omega} \times(2 n+1), \quad(\Delta p)^{2}=\frac{\hbar \omega m}{2} \times(2 n+1) \quad \Longrightarrow \quad \Delta q \times \Delta p=\hbar \times\left(\frac{1}{2}+n\right) . \tag{19}
\end{equation*}
$$

(e) Verify all these formulae.

