This homework is about one-dimensional square wells and barriers. For most students, this should be a refresher of undergraduate quantum mechanics.

1. Consider the bound states in an asymmetric square well,

A symmetric potential well in one dimension always has at least one bound state, but this is not always true for the asymmetric wells with $V_{1} \neq V_{2}$.
(a) Solve the Schrödinger equation in each region of x, apply the 'boundary' conditions at $x \rightarrow \pm \infty$, and spell out the continuity conditions at $x=0$ and $x=L$. Assume a bound state, thus $E<V_{1} \leq V_{2}$.
(b) Solve the continuity conditions and show that the bound states energies - and the corresponding k, κ_{1}, and κ_{2} - must obey

$$
\begin{equation*}
k L=\arctan \frac{\kappa_{1}}{k}+\arctan \frac{\kappa_{2}}{k}+n \times \pi=\arccos \sqrt{\frac{E}{V_{1}}}+\arccos \sqrt{\frac{E}{V_{2}}}+n \times \pi \tag{2}
\end{equation*}
$$

for an integer n
The best way to solve eq. (2) is graphic: plot both sides of the equation as functions of $k-$ or as functions of $\sqrt{E / V_{1}}=k \times$ const - and look for the intersections. Note that the RHS has a separate branch for each n, so there could be several intersections and hence several bound states with different energies.
(c) Show that for a symmetric well with $V_{2}=V_{1}$ and any $L>0$, the branch with $n=0$ always has an intersection. Thus, a symmetric well always has at least one bound state.
(d) On the other hand, an asymmetric well with $V_{1} \neq V_{2}$ and small enough L has no bound state at all. Show this, and also calculate the smallest width $L_{\text {min }}$ of the asymmetric well that does have a bound state.
2. Next, consider a symmetric square barrier,

Calculate the reflection and transmission coefficients for this barrier as functions of the unbound state energy $E>0$ for three cases:
(a) $E<V_{b}$, tunneling under the barrier.
(b) $E>V_{b}$, flying over the barrier.
(c) The barrier is actually a well with $V_{b}<0$.

Hint: show that in terms of k^{\prime} (inside the barrier/well) and k (outside), the wave function and the continuity equations are exactly in part (b), then re-use the result of part (b) instead of re-calculating it from scratch.
\star Also, show that the reflection and transmission coefficients as functions of energy in all 3 cases are related by analytic continuation.

