1. First, a reading assignment: my notes on the saddle point method and on Airy functions.
2. In class I argued that for the highly-excited bound states of a potential well, the WKB approximation for the wave functions should become accurate,

$$
\begin{equation*}
\Psi_{n}^{\mathrm{WKB}}(x) \rightarrow \Psi_{n}^{\text {true }}(x) \text { for } n \rightarrow \infty \tag{1}
\end{equation*}
$$

In this problem, we shall verify this rule for the harmonic oscillator.
(a) Write down the WKB approximation for the oscillator's eigenstates $\Psi_{n}(x)$. Don't bother with the overall normalization of the $\Psi_{n}^{\mathrm{WKB}}(x)$ wave-functions, but please describe them in both classically-allowed and classically-forbidden regions of space.

For future convenience, rescale the coordinate x to

$$
\begin{equation*}
y=\frac{x}{\text { classical oscillation amplitude }}=\sqrt{\frac{m \omega}{(2 n+1) \hbar}} \times x \tag{2}
\end{equation*}
$$

so the classical turning points are at $y= \pm 1$.
Back in homework set\#2 (problem\#3), you (should have) proved a Lemma about the exact wave functions of the harmonic oscillator:

$$
\begin{equation*}
\Psi_{n}^{\text {true }}(x)=\text { const } \times \exp \left(+\frac{m \omega x^{2}}{2 \hbar}\right) \times \int_{-\infty}^{+\infty} d k k^{n} \times \exp \left(i k x-\frac{\hbar k^{2}}{4 m \omega}\right) . \tag{3}
\end{equation*}
$$

(b) Rescale x and k variables and rewrite eq. (3) as

$$
\begin{equation*}
\Psi_{n}^{\text {true }}(y)=\text { const } \times \int_{-\infty}^{+\infty} d q f(q) \times \exp ((2 n+1) g(q, y)) \tag{4}
\end{equation*}
$$

for some n-independent analytic functions $f(q)$ and $g(q, y)$.
(c) Now take the $n \rightarrow \infty$ limit of the integral (4) using the saddle-point method explained in my notes on the subject. Show that for both classically allowed region $-1<y<+1$ and for the classically forbidden regions $y<-1$ or $y>+1$,

$$
\begin{equation*}
\Psi_{n}^{\text {true }}(y) \underset{n \rightarrow \infty}{\longrightarrow} \Psi_{n}^{\text {WKB }}(y) \tag{5}
\end{equation*}
$$

Hints: The exponent $g(q)$ in the integral (4) has two complex saddle points. For $-1<$ $y<+1$, both of these saddle point contribute to the large n limit of the integral. But for $y>+1$ or $y<-1$, only one saddle point contributes and the other does not. To find which saddle point is which, check the directions of complex contours that traverse that point as a mountain highway crosses a pass, up from a valley and then down to another valley; if a direction parallel to real axis is bad, this saddle point does not contribute.
3. Finally, a simple exercise of the (corrected) Bohr-Sommerfeld quantization rule: for a bound state, the action over one full period must be a half-integral multiple of the Planck constant $2 \pi \hbar$,

$$
\begin{equation*}
\oint p(t) d x(t)=2 \pi \hbar \times\left(n+\frac{1}{2}\right), \quad n=0,1,2,3, \ldots \tag{6}
\end{equation*}
$$

Consider the radial motion of an electron in a hydrogen-like atom or ion. Between the Coulomb potential and the centrifugal potential due to angular momentum, the net effective potential for the radial motion is

$$
\begin{equation*}
V_{\mathrm{eff}}(r)=-\frac{Z e^{2}}{r}+\frac{\mathbf{L}^{2}}{2 m r^{2}} . \tag{7}
\end{equation*}
$$

(a) Find the classical turning points r_{1} and r_{2} for a bound state with $E<0$.
(b) Calculate the classical action for one full period of the radial motion.

Mathematical hint:

$$
\begin{equation*}
\int_{A}^{B} d x \frac{\sqrt{(B-x)(x-A)}}{x}=\frac{\pi}{2}(A+B-2 \sqrt{A B}) \tag{8}
\end{equation*}
$$

(c) Apply the Bohr-Sommerfeld rule (6) and show that it yields the correct bound state energies provided we approximate

$$
\begin{equation*}
\mathbf{L}^{2}=\hbar^{2} \ell(\ell+1) \approx \hbar^{2}\left(\ell+\frac{1}{2}\right)^{2} \tag{9}
\end{equation*}
$$

