
PHY–389K Homework set #8. Due October 26, 2021.

PHY–389K: Quantum Mechanics. Section of Professor Vadim Kaplunovsky.

Homework set #10. Due November 14, 1996.

1. Covariant Derivatives

For a charged particle with a wave function Ψ(x, t), the probability density and the

probability current are respectively

ρp(x, t)
def

= |ψ|2, Jp(x, t)
def

=
h̄

M
Im (ψ∗Dψ) (1.1)

where D is the gauge-covariant gradient. These density and current are obviously gauge

invariant; they also satisfy the continuity equation

∇ · Jp +
∂ρp
∂t

= 0, (1.2)

but this is not so obvious.

∗ First, prove a lemma:

∇ · (ψ∗Dψ) = |Dψ|2 + ψ∗D2ψ . (1.3)

• Second, use this lemma to verify the continuity equation (1.2).

Next, consider a spin-half charged particle such as electron. Starting with the Dirac equation

for a free relativistic electron, making a minimal substitution ∂µ → Dµ and then taking the

non-relativistic limit, one arrives at

ih̄Dtψ = − h̄2

2M
(~σ ·D)2 ψ (1.4)

where σ1,2,3 are the Pauli matrices for the electron’s spin.
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⋆ Show that this covariant Schrödinger equation corresponds to the Pauli Hamiltonian

ĤPauli =
1

2M
~̂π
2 − eΦ̂ +

ege
2Mc

Ŝ · B̂ (1.5)

where Ŝ = (h̄/2)~σ is the electron’s spin and ge = 2 its gyromagnetic factor.

2. Superconductivity

Superconductors are macroscopic systems that behave in some essentially quantum ways;

many useful devices such as very sensitive magnetometers (SQUIDs) are based on such

quantum features. The microscopic theory of superconductivity is quite complicated and

took many years to develop; however, the macroscopic theory of superconductivity is much

easier. The goal of these notes (and the exercises contained in them) is to give you a basic

understanding of some of the phenomena involved.

The basic fact of superconducting life is that in cold, non-magnetic metals a small fraction

of the electrons form so-called Cooper pairs. The two electrons forming a pair have momenta

very close to the Fermi surface and almost exactly opposite to each other; the spins of

the two electrons are also opposite. Thus on the whole a Cooper pair is a slowly-moving

spinless boson of electric charge −2e; it is the presence of these charged bosons that gives

rise to superconductivity. Or rather, it’s the Bose–Einstein condensate of the Cooper pairs

which gives rise to the superconductivity. Indeed, the Cooper pairs hardly exist outside

this condensate: the excitations of the superconductor’s ground state break the pairs into

individual electrons rather than kick a pair out of the condensate but keep it unbroken.

At the phenomenological level, we may describe the BEC of Cooper pairs by the Landau–

Ginzburg complex classical field Ψ(x, t) obeying Schrödinger-like non-linear equation

ih̄DtΨ = − h̄2

2M
D2Ψ+ (λ|Ψ|2 − µ) Ψ (2.1)

where M 6= 2me is the effective mass of a Cooper pair, µ is the chemical potential, and λ

parametrizes the short-distance repulsive forces between the Cooper pairs. Heuristically, we

may think of the BEC as having all Cooper pairs being in the same single-particle quantum
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state with a wave function ψ(x, t); in terms of this wave-function, the Landau–Ginzburg field

is simply

Ψ(x, t) =
√

Npairs × ψ(x, t), (2.2)

where the
√

Npairs factor makes ns = |Ψ|2 the local density of the Cooper pair conden-

sate. The non-linear term in the field equation (2.1) stems from the Mean Field Theory

approximation to the interactions between the pairs. That is, we neglect the rather weak

interactions between individual pairs, but the collective effect of all the other pairs on any

one pair gives rise to an effective potential

V(x, t) ≈ λ|Ψ(x, t)|2 − µ. (2.3)

Combining this mean-field effective potential with the macroscopic electric and magnetic

forces on a charged Cooper pair gives rise to the Schrödinger equation

ih̄Dtψ = − h̄2

2M
D2ψ + Vψ (2.4)

for the wave function of a pair, and hence eq. (2.1) for the Landau–Ginzburg field.

Going beyond this heuristic explanation involves a Hilbert of an arbitrary number of

Cooper pairs, creation and annihilation operators for the pairs, and ultimately the non-

relativistic quantum field theory. The classical limit of that quantum field is the Landau–

Ginzburg field. I have outlined how this works for the superfluid liquid helium — or a BEC

condensate of heavy atoms — in an extra lecture on 10/1. The Landau–Ginzburg theory

of the BEC condensate of Cooper pairs works in a similar manner, except for the electric

charge q = −2e of a Cooper pair calls for the covariant derivatives Dt and D in eq. (2.1).

Electric charges and currents

For a single charge particle like a Cooper pair, the probability density and the probability

current are as in eq. (1.1), for for the BEC condensate of the pairs we simply multiply by
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Npairs to get the number density ns and the number flux ~Fs, thus

ns = N |ψ|2 = Ψ|2 and ~F = N
h̄

M
Im(ψ∗Dψ) =

h̄

M
Im(Ψ∗DΨ). (2.5)

Consequently, the superconducting charge density and the electric current density are, re-

spectively,

ρs = −2ens = −2e|Ψ|2 and Js = −2e ~Fs =
−2eh̄

M
Im(Ψ∗DΨ). (2.6)

However, the superconducting BEC condensate of Cooper pairs is not the only charged

ingredient in a superconductor, there is also a Fermi gas of normal (non-superconducting)

electrons and the lattice of ion cores, thus

ρnet = ρion + ρn + ρn ,

Jnet = Jn + Js .
(2.7)

Moreover, in all practical situations the net electric charge density in a superconducting

metal is zero, ρnet = 0. On the other hand, the normal and the superconducting currents do

not cancel each other. Instead, as long as superconductivity exists, the supercurrent Js flows

without resistance and shorts out the electric field E → 0, so by the Ohm’s law Jn = σE,

the normal current does not flow. So the bottom line is, in a superconductor

ρnet = 0 but Jnet = Js . (2.8)

• Let’s describe the complex Landau–Ginzburg field in terms of its magnitude and phase

as

Ψ(x, t) =
√

ns(x, t) exp(iS(x, t)/h̄). (2.9)

Show that in terms of these variables, the supercurrent becomes

Js(x, t) =
−2ens
M

(

∇S(x, t) +
2e

c
A(x, t)

)

. (2.10)

The explicit presence of the vector potential in this formula gives rise to some rather

spectacular effects. In particular, the magnetic field ~B cannot penetrate a bulk supercon-

ductor much beyond a certain depth. This is the Meissner’s effect and it’s exhibited by all
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superconductors in weak magnetic fields; strong magnetic fields destroy the superconductiv-

ity.

• Assume uniform ns 6= 0 for a bulk superconductor and a time-independent magnetic

field B(x). Use Maxwell’s equations together with eq. (2.10) for the supercurrent and

show that the magnetic field in the superconductor obeys

(

~∇2 − ℓ−2
)

B(x) = 0 (2.11)

and hence cannot penetrate the superconductor to a depth much beyond the so-called

Landau depth ℓ. Compute ℓ in terms of Cooper pair density n and whatever constants

you may need.

The Meissner effect leads to many other interesting phenomena, such as magnetic flux

quantization. Indeed, consider a closed loop of superconducting wire: If the wire is thick

enough to expel the magnetic field from its interior, the supercurrent would also be expelled

from the wire’s interior and flow through the wire’s skin only. Hence, in the wire’s interior

∇S + 2e
c A = 0; integrating this equation along the wire’s centerline gives us

∮

wire

A · dx = − c

2e
∆S. (2.12)

The left hand side of this equation is the magnetic flux F through the wire loop. The right

hand side of eq. (2.12) involves the accumulated change of the phase S/h̄ of the LG field; for

a closed loop this total phase change must be an integer multiple of 2π. Therefore, eq. (2.12)

tells us that magnetic flux through a closed loop of a superconducting wire must be an integer

multiple of

F0 =
2πh̄c

2e
(2.13)

This flux quantization condition is closely related to the Aharonov-Bohm effect.

Magnetic flux quantization is used in superconducting devices such as a magnetic am-
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plifier, which is basically a loop of superconducting wire that looks like

(2.14)

Since the total flux through both loops is quantized, it cannot be changed adiabatically.

Therefore, small adiabatic changes of the magnetic field going through the big loop result

in much bigger changes of the field in the small loop. The amplification factor is given by

(minus) the area ratio.

Josephson junctions and SQUIDS

A Josephson’s junction is a week link in a superconducting wire. It can be a sharp

point contact between two wires, or a very thin dielectric film separating two thick films

of superconducting metal, or some other obstacle through which the Cooper pairs have to

tunnel in order to get from one side of the junction to the other.

In the Landau-Ginsburg description, the junction appears as potential barrier: The

effective potential V(x) now acquires an additional term ∆V(x) that vanishes in the interior

of the superconductor but become positive (and large, albeit finite) in the junction area,

thus

V(x, t) = λ|Ψ(x, t)|2 − µ + ∆V(x) = λ(|Ψ(x, t)|2 − n0) + ∆V(x). (2.15)

where n0 = µ/λ is the Cooper pair density in the bulk superconductor. Consequently, the

stationary form of the Landau-Ginsburg equation (2.1) becomes

−h̄2
2M

D2Ψ(x) + λ
(

|Ψ(x)|2 − n0
)

Ψ(x) + ∆V(x)Ψ(x) = 0 (2.16)

To solve the equation, we consider three distinct zones of space: (A) interior and im-

mediate vicinity of one of the superconducting wires; (B) ditto for the other wire; (C) the
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barrier between the wires. If the barrier is sufficiently hard to tunnel through, one can

solve eq. (2.16) for the interior and immediate vicinity of one wire while totally disregard-

ing the very existence of the other wire. One simply imposes the boundary condition that

ΨA → √
n0e

iφ1 as one goes into the first superconductor and ΨA → 0 as one goes away from

it. In the absence of magnetic field, eq. (2.16) is real, so ΨA(x) should be real apart from

the overall factor eiφ1 . Similarly, in the interior and immediate vicinity of the second wire

we have ΨB that is real apart from an overall phase factor eiφ2 . In the third zone — the

middle of the barrier — the pair density n = |Ψ|2 is so small that one can safely ignore the

non-linear term in eq. (2.16); hence the solution in this zone is simply the algebraic sum of

the tails of ΨA and ΨB.

∗ Show that for A = 0, the Landau–Ginzburg field in the middle of the barrier has

general form

ΨC(x) = eiφ1 ×Ψ1(x) + eiφ2Ψ2(x) (2.17)

for some real functions Ψ1(x) and Ψ2(x).

Note: you do not need the specific form of these functions, so don’t waste your time

finding what they look like. In particular, do not try to solve any non-linear differential

equations.

⋆ Use eq. (2.17) to show that in the absence of magnetic field, the total supercurrent

through the Josephson’s junction is

I = I0 sin(φ1 − φ2) (2.18)

where φ1,2 are the phases of the LG field in the two superconductors connected by the

junction and I0 is a constant depending on the specifics of the junction’s structure.

Experimentally, I0 is the maximal supercurrent that tunneling Cooper pairs can carry

through the junction. Single electrons can carry a bigger electric current, but it would be a

normal current, subject to resistance and thus needing a voltage drop. Moreover, according

to the microscopic theory of superconductivity developed by Bardeen, Cooper and Schriffer,

a normal current cannot flow through a Josephson junction until the voltage drop exceeds
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some threshold value (typically, a few millivolts). Experimentally, this is indeed the case:

As one increases the current through a Josephson’s junction, the voltage stays exactly zero

until the maximal supercurrent I0 is reached, then suddenly jumps to a few millivolts; after

that, it continues to grow with the current.

SQUIDs are Superconducting QUantum Interferometry Devices. They come in many shapes,

but the simplest one consists of two Josephson’s junctions in a single loop of superconducting

wire:

JJ#1

JJ#2

(2.19)

In the absence of magnetic field, the maximal supercurrent that can flow through a symmetric

SQUID is clearly 2I0; in the presence of magnetic field things are much more interesting.

⋄ Show that in the presence of magnetic field, the maximal supercurrent that can flow

through the SQUID is

Imax(B) = 2I0

∣

∣

∣

∣

cos
πF

F0

∣

∣

∣

∣

(2.20)

where F is the magnetic flux through the SQUID’s loop and F0 is given by f-la (2.13).

Assume that the field is not so strong as to affect the junctions themselves (otherwise,

I0 would also change with the field) but only their interference.

Practically, SQUIDs are used as very sensitive magnetometers: According to eq. (2.20), tiny

changes of the magnetic field through the SQUID’s loop result in easily measurable changes

in the maximal supercurrent Imax(B). And when even higher sensitivity is needed, one may

combine a SQUID with a magnetic amplifier, or with a cascade arrangement of amplifiers;

the engineering of magnetic couplings between SQUIDs and amplifier loops is tricky, but the

physics is quite straightforward.
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