1. This exercise is about the $S O(3)$ group of rotations in three space dimensions.
(a) A vector \mathbf{v} rotated through an infinitesimal angle $d \alpha$ around axis \mathbf{n} becomes $\mathbf{v}^{\prime}=$ $\mathbf{v}+(d \alpha) \mathbf{n} \times \mathbf{v}$. Show that a rotation through a finite angle α results in

$$
\begin{equation*}
\mathbf{v}^{\prime}=\cos \alpha \mathbf{v}+\sin \alpha \mathbf{n} \times \mathbf{v}+(1-\cos \alpha) \mathbf{n}(\mathbf{n} \cdot \mathbf{v}) \tag{1}
\end{equation*}
$$

Hint: $\mathbf{n} \times \mathbf{n} \times \mathbf{v}=-\mathbf{v}+\mathbf{n}(\mathbf{n} \cdot \mathbf{v})$ and hence $\mathbf{n} \times \mathbf{n} \times \mathbf{n} \times \mathbf{v}=-\mathbf{n} \times \mathbf{v}$.
(b) Re-express formula (1) as $v_{i}^{\prime}=R_{i j}(\alpha, \mathbf{n}) v_{j}$ and write down the explicit form of the rotation matrix $R_{i j}(\mathbf{n}, \alpha)$ and show that it is an $S O(3)$ matrix - real, orthogonal 3×3 matrix with determinant $\operatorname{det}(R)=+1$. (Orthogonality is the real-number analogue of unitarity: An orthogonal matrix satisfies $R \circ R^{\top}=R^{\rightarrow} \circ R=1$.)
(c) Optional exercise: Show that any $S O(3)$ matrix R is a rotation matrix $R(\alpha, \mathbf{n})$ for some angle α and some axis \mathbf{n}.
Hint: Show that an $S O(3)$ matrix has eigenvalues $\left(e^{+i \alpha}, e^{-i \alpha},+1\right)$, then identify α as the rotation angle and the eigenvector for the +1 eigenvalues as the axis of rotations.

In the $S O(3)$ matrix language, the multiplication law for successive rotations is simply the matrix product $R_{3}=R_{2} \circ R_{1}$, or in index terms $R_{i k}^{(3)}=R_{i j}^{(2)} R_{j k}^{(1)}$. Thus, if we first rotate through angle α_{1} around axis \mathbf{n}_{1} and then rotate through angle α_{2} around axis \mathbf{n}_{2}, then the net effect is the $S O(3)$ matrix

$$
\begin{equation*}
R\left(\alpha_{2}, \mathbf{n}_{2}\right) \circ R\left(\alpha_{1}, \mathbf{n}_{1}\right)=R_{3}=R\left(\alpha_{3}, \mathbf{n}_{3}\right) \text { for some } \alpha_{3} \text { and } \mathbf{n}_{3}, \tag{2}
\end{equation*}
$$

where the second equality follows from part (c). Alas, calculating the net rotation's angle \mathbf{n}_{3} and axis α_{3} directly from this formula is painfully tedious.

Instead, there is a simpler Cayley-Klein method; originally, it involved quaternions, but later was rephrased in terms of the $S U(2)$ matrices, - i.e., complex unitary 2×2 matrices of unit determinant. Here is how it works: For any rotation $R(\alpha, \mathbf{n})$, let's define an $S U(2)$ matrix

$$
\begin{equation*}
Q(\alpha, \mathbf{n})=\exp \left(-i \frac{\alpha}{2} \mathbf{n} \cdot \vec{\sigma}\right)=\cos \frac{\alpha}{2}-i \sin \frac{\alpha}{2} \mathbf{n} \cdot \vec{\sigma} . \tag{3}
\end{equation*}
$$

where $\sigma_{x}, \sigma_{y}, \sigma_{z}$ are Pauli matrices, $c f$. homework set\#3 (problem\#1).
(d) Show that

$$
\begin{equation*}
Q^{\dagger}(\alpha, \mathbf{n}) \sigma_{i} Q(\alpha, \mathbf{n})=R_{i j}(\alpha, \mathbf{n}) \sigma_{j} \tag{4}
\end{equation*}
$$

(e) Now suppose the angles $\alpha_{1,2,3}$ and the unit vectors $\mathbf{n}_{1,2,3}$ satisfy the Cayley-Klein equation

$$
\begin{equation*}
Q\left(\mathbf{n}_{3}, \alpha_{3}\right)=Q\left(\mathbf{n}_{2}, \alpha_{2}\right) Q\left(\mathbf{n}_{1}, \alpha_{1}\right) . \tag{5}
\end{equation*}
$$

Use eq. (4) to show that the corresponding 3×3 rotation matrices satisfy eq. (2).
(f) Finally, solve the Cayley-Klein equation (5) for the ($\mathbf{n}_{3}, \alpha_{3}$) in terms of the ($\mathbf{n}_{2}, \alpha_{2}$) and the $\left(\mathbf{n}_{1}, \alpha_{1}\right)$.
2. In the Heisenberg picture of the rotational symmetries, a rotation through angle α around axis \mathbf{n} transforms an operator \hat{A} into

$$
\begin{equation*}
\hat{A}^{\prime}=\hat{\mathcal{R}}^{\dagger}(\mathbf{n}, \alpha) \hat{A} \hat{\mathcal{R}}(\mathbf{n}, \alpha) . \tag{6}
\end{equation*}
$$

Consequently, a scalar operator \hat{S} must be invariant under all rotations,

$$
\begin{equation*}
\hat{\mathcal{R}}^{\dagger}(\mathbf{n}, \alpha) \hat{S} \hat{\mathcal{R}}(\mathbf{n}, \alpha)=\hat{S} \tag{7}
\end{equation*}
$$

while the 3 components ($\hat{V}_{x}, \hat{V}_{y}, \hat{V}_{z}$) of a vector operator $\hat{\mathbf{V}}$ transform into each other as

$$
\begin{equation*}
\hat{\mathcal{R}}^{\dagger}(\mathbf{n}, \alpha) \hat{V}_{i} \hat{\mathcal{R}}(\mathbf{n}, \alpha)=R_{i j}(\mathbf{n}, \alpha) \hat{V}_{j} . \tag{8}
\end{equation*}
$$

If fact, eqs. (7) is a definition of a scalar operator while eq. (8) is a definition of a vector operator.

These definitions of scalar and vector operators can be restated in terms of commutation relations with the angular momentum operators $\hat{J}_{x, y, z}$:

$$
\begin{align*}
& \hat{S} \text { is a scalar iff }\left[\hat{S}, \hat{J}_{i}\right]=0, \tag{9}\\
& \hat{\mathbf{V}} \text { is a vector iff }\left[\hat{V}_{i}, \hat{J}_{j}\right]=i \hbar \epsilon_{i j k} \hat{V}_{k} \tag{10}
\end{align*}
$$

(a) Show that eqs. (7) and (9) for a scalar operator are equivalent to each other: is \hat{S} remains invariant under all rotations as in eq. (7) then it must commute with the $\hat{J}_{x, y, z}$, and conversely if \hat{S} commutes with all $3 \hat{J}_{x, y, z}$ then it's invariant under all rotations.

For the vector operators, eqs. (8) and (10) are also equivalent to each other, but this takes a bit more work to prove. In particular, we need the Baker-Hausdorff lemma: For any two operators \hat{B} and \hat{C},

$$
\begin{equation*}
e^{\hat{B}} \hat{C} e^{-\hat{B}}=\hat{C}+[\hat{B}, \hat{C}]+\frac{1}{2}[\hat{B},[\hat{B}, \hat{C}]]+\cdots+\frac{1}{n!}[\hat{B},[\hat{B}, \ldots,[\hat{B}, \hat{C}] \ldots]]_{n}+\cdots . \tag{11}
\end{equation*}
$$

(b) Prove this lemma. Hint: Let $\hat{C}_{\lambda}=e^{\lambda \hat{B}} \hat{C} e^{-\lambda \hat{B}}$, show that $\frac{d}{d \lambda} \hat{C}_{\lambda}=\left[\hat{B}, \hat{C}_{\lambda}\right]$, iterate for the higher derivatives, and then expand into a series in powers of λ.
(c) Show that if the 3 components \hat{V}_{i} of a vector operator $\hat{\mathbf{V}}$ transform into each other under space rotations according to eq. (8), then their commutation relations with the angular momentum components should be as in eq. (10). Hint: consider infinitesimally small α and work to the first order in α.
(d) Now, suppose three component operators $\hat{V}_{x, y, z}$ satisfy the commutation relations (10). Use the Baker-Hausdorff lemma to verify eq. (8) for any finite rotation.
Hint: $\hat{\mathcal{R}}(\mathbf{n}, \alpha)=\exp \left(-i \frac{\alpha}{\hbar} \mathbf{n} \cdot \hat{\mathbf{J}}\right)$.
Note that for spin-half system with no other degrees of freedom, $\hat{\mathbf{J}}$ is simply the spin $\hat{\mathbf{S}}=\frac{\hbar}{2} \vec{\sigma}$ and hence $\hat{\mathcal{R}}(\mathbf{n}, \alpha)=U(\mathbf{n}, \alpha)$ (cf. eq. (3)). Thus, eq. (4) is simply a special case of the general formula (8).
(e) Finally, consider the tensor operators. By definition, the component operators $\hat{T}_{i_{1}, i_{2}, \ldots, i_{n}}$ form an n-index tensor operator if and only if for any rotation,

$$
\begin{equation*}
\hat{\mathcal{R}}^{\dagger} \hat{T}_{i_{1}, i_{2}, \ldots, i_{n}} \hat{\mathcal{R}}=R_{i_{1} j_{1}} R_{i_{2} j_{2}} \cdots R_{i_{n} j_{n}} \hat{T}_{j_{1}, j_{2}, \ldots, j_{n}} . \tag{12}
\end{equation*}
$$

Show that $\hat{T}_{i_{1}, i_{2}, \ldots, i_{n}}$ form a tensor if and only if

$$
\begin{equation*}
\left[\hat{T}_{i_{1}, i_{2}, \ldots, i_{n}}, \hat{J}_{j}\right]=i \hbar \epsilon_{i_{1} j k} \hat{T}_{k, i_{2}, \ldots, i_{n}}+\cdots+i \hbar \epsilon_{i_{n} j k} \hat{T}_{i_{1}, \ldots, i_{n-1}, k} \tag{13}
\end{equation*}
$$

(f) Use $R R^{\top}=1$ and $\operatorname{det}(R)=1$ to show that for any two-index tensor operator $\hat{A}_{i j}$, $\hat{B}=\delta_{i j} \hat{A}_{i j}$ is a scalar and $\hat{C}_{i}=\epsilon_{i j k} \hat{A}_{j k}$ is a vector. Then use these facts to show that for any two vector operators $\hat{\mathbf{F}}$ and $\hat{\mathbf{G}}$ - regardless of whether they commute with each other or not, - the dot product $\hat{\mathbf{F}} \cdot \hat{\mathbf{G}}$ is a scalar operator and the cross product $\hat{\mathbf{F}} \times \hat{\mathbf{G}}$ is a vector operator.

