PHY-389K Homework set #39. Due November 2, 2021.

1. This exercise is about the SO(3) group of rotations in three space dimensions.

(a) A vector v rotated through an infinitesimal angle da around axis n becomes v/ =

v + (da)n x v. Show that a rotation through a finite angle « results in

v/ = cosav + sinanxv + (1 —cosa)n(n-v). (1)

Hint: nXxnxv=-v+n(n-v)and hencen Xxnxnxv=-nxv.

(b) Re-express formula (1) as v} = Rj;j(a,n)v; and write down the explicit form of the
rotation matrix R;;(n, o) and show that it is an SO(3) matrix — real, orthogonal 3 x 3
matrix with determinant det(R) = +1. (Orthogonality is the real-number analogue of

unitarity: An orthogonal matrix satisfies Ro R’ = R7oR=1.)

(c¢) Optional exercise: Show that any SO(3) matrix R is a rotation matrix R(«, n) for some
angle a and some axis n.
Hint: Show that an SO(3) matrix has eigenvalues (™ e~ 41), then identify a as
the rotation angle and the eigenvector for the +1 eigenvalues as the axis of rotations.

In the SO(3) matrix language, the multiplication law for successive rotations is simply the

(2) p(1)
through angle a; around axis n; and then rotate through angle as around axis ng, then the

net effect is the SO(3) matrix

matrix product R3 = Ro o Ry, or in index terms Rl(i) =R Thus, if we first rotate

R(ag,ng) o R(ag,n1) = Rz = R(as,n3) for some ag and ng3, (2)
where the second equality follows from part (c). Alas, calculating the net rotation’s angle
n3 and axis ag directly from this formula is painfully tedious.

Instead, there is a simpler Cayley—Klein method; originally, it involved quaternions, but later
was rephrased in terms of the SU(2) matrices, — i.e., complex unitary 2 x 2 matrices of unit

determinant. Here is how it works: For any rotation R(a,n), let’s define an SU(2) matrix

Q(a,n) = exp(—i§n-G) = cos§ — isingn-a. (3)

where 0, 0y, 0, are Pauli matrices, c¢f. homework set#3 (problem#1).


https://en.wikipedia.org/wiki/Quaternion
http://web2.ph.utexas.edu/~vadim/Classes/2021f/hw03.pdf

(d) Show that

Q'(a,n)0;Q(a,n) = Rjj(a,n)o; . (4)

(e) Now suppose the angles aj 2 3 and the unit vectors nj o 3 satisfy the Cayley—Klein equa-

tion
Q(n3,a3) = Q(n2,a2) Q(n1,a1). (5)
Use eq. (4) to show that the corresponding 3 x 3 rotation matrices satisfy eq. (2).

(f) Finally, solve the Cayley-Klein equation (5) for the (ng, a3) in terms of the (na, ag) and
the (1’11, 041).

2. In the Heisenberg picture of the rotational symmetries, a rotation through angle o around

axis n transforms an operator A into

~

A" = Ri(n,a) AR(n, ). (6)
Consequently, a scalar operator S must be invariant under all rotations,

Ri(n,0) SR(n,a) = S, (7)

~

while the 3 components (VI, Vi, Vg) of a vector operator V transform into each other as

~

Ri(m,a)V;R(n,a) = Rij(n,a)V;. (8)
If fact, egs. (7) is a definition of a scalar operator while eq. (8) is a definition of a vector
operator.

These definitions of scalar and vector operators can be restated in terms of commutation

relations with the angular momentum operators jx,y, o

S is a scalar iff [S, J;] = 0, (9)
V is a vector iff [Vl, jj] = iheijk.vk. (10)

(a) Show that egs. (7) and (9) for a scalar operator are equivalent to each other: is S remains
invariant under all rotations as in eq. (7) then it must commute with the jx,y,z, and

conversely if S commutes with all 3 j{p’y’z then it’s invariant under all rotations.



For the vector operators, eqs. (8) and (10) are also equivalent to each other, but this takes
a bit more work to prove. In particular, we need the Baker-Hausdorff lemma: For any two

operators B and C,

~

BCeB = ¢ + [B,C] + 3B,B.CY + - + L[BB,...[BC]. Jln + . (1)

(b) Prove this lemma. Hint: Let Cy = e)‘BCA’e_/\B, show that %CA’A = [f?,(:&], iterate for

the higher derivatives, and then expand into a series in powers of \.

(¢) Show that if the 3 components V; of a vector operator V transform into each other under
space rotations according to eq. (8), then their commutation relations with the angular
momentum components should be as in eq. (10). Hint: consider infinitesimally small «

and work to the first order in «.

(d) Now, suppose three component operators f/m’y’,z satisfy the commutation relations (10).
Use the Baker-Hausdorff lemma to verify eq. (8) for any finite rotation.
Hint: R(n, a) = exp(—ign-J).
Note that for spin-half system with no other degrees of freedom, Jis simply the spin S = %5’
and hence R(n,a) = U(n, o) (cf. eq. (3)). Thus, eq. (4) is simply a special case of the

general formula (8).

(e) Finally, consider the tensor operators. By definition, the component operators Tllmln

form an n-index tensor operator if and only if for any rotation,

~ ~ A ~

RTﬂl,iQ,...,inR = RilleinQ e Rln]n z}l,j%“-a.jn N (12)
Show that Til,ig,...,z'n form a tensor if and only if

[7}1,2‘2,...,@”7(@} = ih€ ik Thiy,.. i + -+ ihep ik Tiy ik - (13)

(f) Use RR"T = 1 and det(R) = 1 to show that for any two-index tensor operator A,
B = (52-3-121@- is a scalar and OZ = eijkfljk is a vector. Then use these facts to show that
for any two vector operators F and G — regardless of whether they commute with each
other or not, — the dot product F -G is a scalar operator and the cross product FxG

is a vector operator.



