1. This problem is about the oribital angular momentum $\hat{\mathbf{L}}=\hat{\mathbf{x}} \times \hat{\mathbf{p}}$ and the spherical harmonics $Y_{\ell m}(\theta, \phi)$ - the angular wave functions of quantum states with definite values of $\overrightarrow{\hat{L}}^{2}$ and \hat{L}_{z}. In order to eliminate irrelevant degrees of freedom, let us consider a spinless particle living on a sphere; its quantum state is completely described by the angular wave function $\Psi(\vec{n}) \equiv \Psi(\theta, \phi)$, while the net angular momentum $\hat{\mathbf{J}}$ generating the rotational symmetry of the sphere is simply the orbital angular momentum $\hat{\mathbf{L}}$.
(a) In the Cartesian coordinate basis, the angular momentum operator acts as $\hat{\mathbf{L}}=-i \hbar \mathbf{x} \times$ ∇. Show that in the spherical coordinates, the \hat{L}_{Z} and $\hat{L}_{ \pm}$components of $\hat{\mathbf{L}}$ become

$$
\begin{equation*}
\hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi}, \quad \hat{L}_{ \pm} \equiv \hat{L}_{x} \pm i \hat{L}_{y}=\hbar e^{ \pm i \phi}\left(\pm \frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \phi}\right) \tag{1}
\end{equation*}
$$

Note the decoupling of these formulae from the radial coordinate r, hence the legitimacy of restriction on a sphere of fixed r.
(b) Show that for any integer m there is a unique wave function Ψ satisfying $\hat{L}_{z} \Psi=\hbar m \Psi$ and either $\hat{L}_{+} \Psi=0($ for $m>0)$ or $\hat{L}_{-} \Psi=0($ for $m<0)$ or both (for $m=0$). Give explicit solution $\Psi(\theta, \phi)$, normalized to $\iint d^{2} \vec{n}|\Psi(\vec{n})|^{2}=1$.
(c) Use general properties of the angular momentum operators to prove that the wave functions you have just obtained belong to states $|\ell, m\rangle$ with $\ell=|m|$ and that for all pairs of integers (ℓ, m) with $\ell \geq|m|$ there should be a unique state $|\ell, m\rangle$.
(d) Without performing any explicit calculations, argue that together $Y_{\ell m}(\mathbf{n}) \equiv\langle\mathbf{n} \mid \ell, m\rangle$ (n being a unit vector in some direction (θ, ϕ)) form a complete orthonormal basis for the angular wave functions. In other words,

$$
\begin{equation*}
\iint d^{2} \mathbf{n} Y_{\ell m}^{*}(\mathbf{n}) Y_{\ell^{\prime} m^{\prime}}(\mathbf{n})=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \quad \text { and } \quad \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{+\ell} Y_{\ell m}(\mathbf{n}) Y_{\ell m}^{*}\left(\mathbf{n}^{\prime}\right)=\delta^{(2)}\left(\mathbf{n}-\mathbf{n}^{\prime}\right) \tag{2}
\end{equation*}
$$

Note: $d^{2} \mathbf{n}=\sin \theta d \theta d \phi$ and hence $\delta^{(2)}\left(\mathbf{n}-\mathbf{n}^{\prime}\right)=\delta\left(\theta-\theta^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right) / \sin \theta$.
(e) Applying general formulae for the matrix elements of the angular momentum operators to the case of \hat{L}_{-}, we have

$$
\begin{equation*}
\hat{L}_{-}|\ell, m\rangle=\hbar \sqrt{(\ell+m)(\ell+1-m)}|\ell, m-1\rangle . \tag{3}
\end{equation*}
$$

Use this formula recursively to show that

$$
\begin{equation*}
Y_{\ell, m}(\theta, \phi)=\sqrt{\frac{2 \ell+1}{4 \pi}} \frac{(-1)^{\ell}}{2^{\ell} \ell!} \sqrt{\frac{(\ell+m)!}{(\ell-m)!}} \times \frac{e^{i m \phi}}{\sin ^{m} \theta} \times\left[\frac{d^{\ell-m}}{d x^{\ell-m}}\left(1-x^{2}\right)^{\ell}\right]_{x=\cos \theta} \tag{4}
\end{equation*}
$$

for any integer ℓ and m with $|m| \leq \ell$. In particular, for $m=0$,

$$
\begin{equation*}
Y_{\ell, 0}(\theta, \phi)=\sqrt{\frac{2 \ell+1}{4 \pi}} \times P_{\ell}(\cos \theta) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{\ell}(x)=\frac{1}{2^{\ell} \ell!} \frac{d^{\ell}}{d x^{\ell}}\left(x^{2}-1\right)^{\ell} \tag{6}
\end{equation*}
$$

is the $\ell^{\text {th }}$ Legendre polynomial.
(f) Prove $Y_{\ell,-m}(\theta, \phi)=(-1)^{m} Y_{\ell, m}^{*}(\theta, \phi)$.

Hint: prove and use

$$
\begin{equation*}
\frac{1}{(\ell-m)!} \frac{d^{\ell-m}}{d x^{\ell-m}}\left(1-x^{2}\right)^{\ell}=(-1)^{m}\left(1-x^{2}\right)^{m} \times \frac{1}{(\ell+m)!} \frac{d^{\ell+m}}{d x^{\ell+m}}\left(1-x^{2}\right)^{\ell} . \tag{7}
\end{equation*}
$$

(g) Write down explicit formulae for $Y_{\ell, m}(\theta, \phi)$ for $\ell=0,1,2$ and all legitimate m.
(h) Finally, for extra credit, show that

$$
\begin{equation*}
\sum_{m=-l}^{l} Y_{\ell, m}^{*}\left(\mathbf{n}_{1}\right) Y_{\ell, m}\left(\mathbf{n}_{2}\right)=\frac{2 l+1}{4 \pi} P_{\ell}\left(\mathbf{n}_{1} \cdot \mathbf{n}_{2}\right) \tag{8}
\end{equation*}
$$

Hint: First show that the left hand side is invariant under simultaneous rotations of \mathbf{n}_{1} and \mathbf{n}_{2} and use this invariance to rotate \mathbf{n}_{1} into the north pole of the sphere $\left(\theta_{1}^{\prime}=0\right)$. Then show that $Y_{\ell m}\left(\theta^{\prime}=0\right)=0$ for $m \neq 0$ and use this fact to simplify the sum.
2. We have seen in class the the $S O(3)$ rotation group has both single-valued and double-valued representations, corresponding to integral and half-integral values of j, respectively. Both kinds of representations become single-valued in terms of the $\operatorname{Spin}(3)$ group - the double cover of the $S O(3)$; as discussed in class, $\operatorname{Spin}(3)$ is isomorphic to $S U(2)$.

The $S U(2)$ picture of the spin group is also more convenient for deriving the explicit rotation matrices

$$
\begin{equation*}
\mathcal{D}_{m^{\prime} m}^{(j)}(\varphi, \mathbf{n}) \stackrel{\text { def }}{=}\left\langle j, m^{\prime}\right| \hat{\mathcal{R}}(\varphi, \mathbf{n})|j, m\rangle \tag{9}
\end{equation*}
$$

for all representations (j). In this problem, we are going to construct the $\mathcal{D}_{m^{\prime} m}^{(j)}$ matrix elements as explicit polynomials of the matrix elements $U_{\alpha \beta}$ of the $S U(2)$ matrix

$$
\begin{equation*}
U(\varphi, \mathbf{n})=\exp (-i \varphi \mathbf{n} \cdot \vec{\sigma} / 2)=\cos \frac{\varphi}{2}-i \sin \frac{\varphi}{2} \mathbf{n} \cdot \vec{\sigma} \tag{10}
\end{equation*}
$$

Our starting point is a system of two independent harmonic oscillators whose creation and annihilation operators $\hat{a}_{1}^{\dagger}, \hat{a}_{2}^{\dagger}, \hat{a}_{1}$ and \hat{a}_{2} obey the canonical commutation relations

$$
\begin{equation*}
\left[\hat{a}_{\alpha}, \hat{a}_{\beta}\right]=0=\left[\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}\right], \quad\left[\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}\right]=\delta_{\alpha \beta}, \quad \alpha, \beta=1,2 \tag{11}
\end{equation*}
$$

and a trio of model angular momentum operators

$$
\begin{equation*}
\hat{J}^{i}=\frac{\hbar}{2} \sum_{\alpha, \beta} \sigma_{\alpha \beta}^{i} \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \tag{12}
\end{equation*}
$$

where $\sigma_{\alpha \beta}^{i}$ are the matrix elements of the Pauli matrices σ^{i}; this model was invented by Julian Schwinger.
(a) Calculate the commutators $\left[\hat{J}^{i}, \hat{a}_{\alpha}\right]$ and $\left[\hat{J}^{i}, \hat{a}_{\alpha}^{\dagger}\right]$.
(b) Verify that $\left[\hat{J}^{i}, \hat{J}^{j}\right]=i \hbar \epsilon^{i j k} \hat{J}^{k}$; it is this relation that allows us to treat the \hat{J}^{i} as model angular momenta.
(c) Prove that

$$
\begin{equation*}
\overrightarrow{\vec{J}}^{2}=\hbar^{2} \frac{\hat{N}}{2}\left(\frac{\hat{N}}{2}+1\right), \quad \text { where } \quad \hat{N} \equiv \hat{a}_{1}^{\dagger} \hat{a}_{1}+\hat{a}_{2}^{\dagger} \hat{a}_{2} \tag{13}
\end{equation*}
$$

Hint: First express \hat{J}_{z} and $\hat{J}_{ \pm}$explicitly in terms of $\hat{a}_{1,2}$ and $\hat{a}_{1,2}^{\dagger}$; then compute $\overrightarrow{\vec{J}}^{2}=$ $\hat{J}_{z}^{2}+\frac{1}{2}\left\{\hat{J}_{+}, \hat{J}_{-}\right\}$.
(d) Show that for this model the states with definite values of j and m are precisely the states with definite numbers of oscillatorial quanta n_{1} and n_{2}. Specifically,
$|j, m\rangle=\left|n_{1}=j+m, n_{2}=j-m\right\rangle=((j+m)!(j-m)!)^{-1 / 2}\left(\hat{a}_{1}^{\dagger}\right)^{j+m}\left(\hat{a}_{2}^{\dagger}\right)^{j-m}|0\rangle$,
where $|0\rangle$ is the ground state of the two-oscillator system.
Consequently, the Hilbert space of the model comprises one and only one copy of each allowed multiplet of the angular momentum algebra.

Now consider the rotation operators $\hat{\mathcal{R}}(\varphi, \mathbf{n})=\exp (-i \varphi \mathbf{n} \cdot \hat{\mathbf{J}} / \hbar)$ generated by the model angular momentum operators (12).
(e) Show that for any such rotation $\hat{\mathcal{R}}|0\rangle=|0\rangle$.

Hint: Prove and use $\hat{\mathbf{J}}|0\rangle=0$.
(f) Use commutation relations (a) and the Baker-Hausdorff lemma to show that

$$
\begin{equation*}
\hat{\mathcal{R}}(\varphi, \mathbf{n}) \hat{a}_{\alpha}^{\dagger} \hat{\mathcal{R}}^{\dagger}(\varphi, \mathbf{n})=\sum_{\gamma} \hat{a}_{\gamma}^{\dagger} U_{\gamma \alpha}(\varphi, \mathbf{n}) \tag{15}
\end{equation*}
$$

where $U_{\gamma \alpha}(\varphi, \mathbf{n})$ are the martix elements of the matrix (10).
(g) Now comes the crucial step: Use the results of (d), (e) and (f) to show that for the Schwinger's model

$$
\begin{equation*}
\hat{\mathcal{R}}(\varphi, \mathbf{n})|j, m\rangle=\sum_{m^{\prime}=-j}^{+j}\left|j, m^{\prime}\right\rangle \mathcal{D}_{m^{\prime} m}^{(j)}(\varphi, \mathbf{n}) \tag{16}
\end{equation*}
$$

and express the matrix elements $\mathcal{D}_{m^{\prime} m}^{(j)}(\varphi, \mathbf{n})$ as polynomials of degree $2 j$ in the matrix elements $U_{\gamma \alpha}(\varphi, \mathbf{n})$ of the $S U(2)$ matrix (10). In particular, for $j=\frac{1}{2}$, you should get $\left\|\mathcal{D}^{(1 / 2)}\right\|=\|U\|$.
(h) Finally, explain why in any quantum system with a well-defined angular momentum, rotation operators must act according to

$$
\begin{equation*}
\hat{\mathcal{R}}(\varphi, \mathbf{n})|j, m, n\rangle=\sum_{m^{\prime}=-j}^{+j}\left|j, m^{\prime}, n\right\rangle \mathcal{D}_{m^{\prime} m}^{(j)}(\varphi, \mathbf{n}) \tag{17}
\end{equation*}
$$

with exactly the same rotation matrices $\left\|\mathcal{D}^{(j)}(\varphi, \mathbf{n})\right\|$ as you have just computed for the Schwinger's model.

