
PHY–389K Homework set #11. Due November 16, 2021.

1. For all spherically symmetric potentials, the discrete spectra of bound states energies have

(2`+ 1)–fold degeneracy mandated by the SO(3) symmetry — all states |nr, `,m〉 with the

same l and nr but different m have the same energy E(nr, `). For most potentials, there is

no further degeneracy — different combinations of ` and nr give different energies. However,

there are two ‘accidentally degenerate’ exceptions of that rule: the spherically-symmetric

harmonic potential V̂ = 1
2Mω2r̂2, and the Coulomb potential V̂ = −e2Z/r̂. In both cases

the extra degeneracy is not accidental but is due to non-obvious conservation laws leading to

unexpected enlargement of the symmetry group from the rotations-only SO(3) to the SU(3)

in the harmonic case and to the SO(3)× SO(3) ∼= SO(4) in the Coulomb case.

The unexpected conservation law in the Coulomb case is the Laplace–Runge–Lenz theorem

generalized from classical to quantum mechanics. Classically, we define the Runge–Lenz

vector K as

K
def
= p× L − e2ZM n (1)

where M is the particle’s mass, L
def
= x × p is its angular momentum and n

def
= x/r is a

unit vector pointing towards the particle. The Laplace–Runge–Lenz theorem states that for

Coulomb/Newton potential, K is a conserved quantity, i.e., does not change with time.

(a) Prove the classical Laplace–Runge–Lenz theorem.

(b) Use K = const to show that a classical orbit is a conical section of eccentricity ε =

|K|/e2ZM ,

r(φ) =
L2

e2ZM + |K| cosφ
(2)

where φ is the angle between the vectors K and x. For ε < 1, the orbit (2) is a closed

ellipse whose pericenter lies in the direction pointed by K.

Hint: prove and use x ·K = L2 − e2ZMr.

In quantum mechanics we define the Runge-Lenz vector operator as

K̂
def
= 1

2

(
p̂× L̂− L̂× p̂

)
− e2ZM n̂

= p̂× L̂ − ih̄p̂ − e2ZM n̂.
(3)
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(c) Check the Hermiticity of the component operators K̂i using the top line here as the

definition, then check that the bottom line agrees with the top line.

(d) Verify that the Runge–Lenz operator (3) is conserved, i.e., commutes with the Hamil-

tonian

Ĥ =
1

2M
p̂2 − e2Z r̂−1. (4)

To find out the Lie algebra generated by the conserved operators L̂i and K̂i, we need their

commutation relations

[L̂i, L̂j ] = ih̄εijkL̂k , (5)

[K̂i, L̂j ] = ih̄εijkK̂k , (6)

[K̂i, K̂j ] = ih̄εijkL̂k × (−2MĤ). (7)

We know eq. (5) is true, and it is easy to check that the K̂ operator is a vector so its

components obey eq. (6).

(e) Verify eq. (7).

For the rest of this problem, let’s focus on the subspace of the Hilbert space spanned by the

bound states. In terms of the Hamiltonian operator Ĥ, this is the subspace of negative-energy

states, so in this subspace
√
−2MĤ is a well-defined Hermitian operator.

Let’s define two vector operators

Q̂+ =
L̂

2
+

K̂

2
√
−2MĤ

and Q̂− =
L̂

2
− K̂

2
√
−2MĤ

(8)

in the bound-state subspace. In this subspace the Q̂i
± operators are Hermitian, and their

conservation follows from the conservation of L̂, K̂, and Ĥ itself.

(f) Show that the six operators Q̂i
± obey the following SO(3) × SO(3) commutation rela-

tions: [
Q̂i

+, Q̂
j
+

]
= ih̄εijkQ̂k

+ ,
[
Q̂i

−, Q̂
j
−

]
= ih̄εijkQ̂k

− ,
[
Q̂i

+, Q̂
j
−

]
= 0. (9)

This SO(3)×SO(3) algebra can be used to describe all bound states as |q+,m+, q−,m−〉—
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simultaneous eigenstates of the Q̂2
± and Q̂z

± operators. However, this description is somewhat

redundant:

(g) Verify that K̂ · L̂ = L̂ · K̂ = 0 and use this fact to show that all bound states have

Q2
+ = Q2

− and hence q+ = q−.

Therefore we can label the bound states of the Coulomb potential as |q,m+,m−〉; their

energies depend only on q and thus are (2q+1)2–fold degenerate. To compute those energies:

(h) First, show that

K̂2 = (e2ZM)2 + 2MĤ
(
L̂2 + h̄2

)
(10)

(in classical mechanics K2 = (e2ZM)2 + 2MEL2).

(i) Second, use (8) and (10) to derive

2Q̂2
+ + 2Q̂2

− + h̄2 =
(e2ZM)2

−2MĤ
. (11)

(j) And finally use (11) to show that the energy of the |q,m+,m−〉 bound state is

EN = − M(e2Z)2

2h̄2(2q + 1)2
≡ −M(e2Z)2

2h̄2N2
(12)

where N
def
= 2q+ 1 is a positive integer, usually called the principal quantum number of

the bound state.

(k) Show that for each value of the principal quantum number N , the orbital quantum

number ` takes all integer values between zero and N − 1.

Hint: Use L̂ = Q̂+ + Q̂−.

Also, argue that this means that in terms of ` and the radial quantum number nr,

N = l + nr + 1, which implies that the spectrum of N consists of all positive integers.

Hint: for a fixed nr, the bound state energy E(nr, `) must srictly increase with `.
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2. Going from the sublime to the mundane, this problem is about the Clebbsch–Gordan coef-

ficients 〈j1, j1, j,m|j1,m1, j1,m2〉.

Let’s start with the states of an electron with a given orbital angular momentum ` > 0 and

spin s = 1
2 . In terms of the net angular momentum Ĵ = L̂+ Ŝ, these (2`+ 1)× 2 states form

two multiplets with j = `+ 1
2 and j = `− 1

2 . Specifically, the states with definite j and mj

are

∣∣j = `+ 1
2 ,mj

〉
=

√
`+ 1

2 +mj

2`+ 1

∣∣m` = mj − 1
2 ,ms = +1

2

〉

+

√
`+ 1

2 −mj

2`+ 1

∣∣m` = mj + 1
2 ,ms = −1

2

〉
, (13)

∣∣j = `− 1
2 ,mj

〉
=

√
`+ 1

2 −mj

2`+ 1

∣∣m` = mj − 1
2 ,ms = +1

2

〉

−

√
`+ 1

2 +mj

2`+ 1

∣∣m` = mj + 1
2 ,ms = −1

2

〉
. (14)

(a) First, argue that

∣∣j = `+ 1
2 ,mj = `+ 1

2

〉
=
∣∣m` = +`,ms = +1

2

〉
. (15)

Then verify eq. (13) for the rest of the j = ` + 1
2 states by recursively applying the

operator Ĵ− = L̂− + Ŝ− to both sides of eq. (13).

(b) Given eqs. (13) for the j = ` + 1
2 states, derive eqs. (14) for the j = ` − 1

2 states from

the orthogonality condition
〈
j = `+ 1

2 ,mj |j = `− 1
2 ,mj

〉
= 0 (for the same mj).

(c) Verify that eqs. (14) are consistent with the action of the Ĵ− = L̂− + Ŝ− operator.

3. Finally, an optional exercise, for extra credit. This problem is also about the Clebbsch–

Gordan coefficients.

Consider a free oxygen atom. In its ground state, 6 out of 8 electrons are paired up, while

the 2 un-paired electrons in 2p orbitals have net orbital angular momentum L = 1 and net
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spin S = 1, so altogether there are 3×3 = 9 degenerate states (before we take the spin-orbit

coupling into account). In terms of the net angular momentum Ĵ = L̂ + Ŝ, the nine states

form a J = 2 quintiplet, a J = 1 triplet, and a J = 0 singlet.

Your task is to spell out states |J,mJ〉 with definite values of J and mJ as linear combinations

of states |mL,mS〉 with definite mL and mS .

(a) Start with the J = 2 states. First, identify the |J = 2,mJ = +2〉 state as the only state

with mJ = +2, and then act recursively with the Ĵ− = L̂− + Ŝ− operator to build the

rest of the |J = 2,mJ〉 states.

(b) Next, the J = 1 states. Find the |J = 1,mJ = +1〉 state as the linear combination of

only two states with mL +mS = +1 which is orthogonal to the |J = 2,mJ = +1〉 state.

Then act recursively with the Ĵ− = L̂−+Ŝ− operator to build the rest of the |J = 1,mJ〉
states.

(c) Finally, find the |J = 0,mJ = 0〉 state as the linear combination of the three states with

mL +mS = 0 which is orthogonal to both |J = 2,mJ = 0〉 and |J = 1,mJ = 0〉.
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