1. In my notes on the spherical tensor operators and the Wigner-Eckart theorem, I made a few statements without proofs. This problem is where you prove those statements.
By definition, a set of $2 k+1$ component operators $\hat{T}_{\mu}^{(k)}$ (for $\mu=-k, \ldots,+k$) comprises a spherical tensor operator of rank k if and only if their commutators with the angular momentum operators \hat{J}_{i} are

$$
\begin{equation*}
\left[\hat{J}_{i}, \hat{T}_{\mu}^{(k)}\right]=\sum_{\mu^{\prime}} \hat{T}^{(k)} \times\left\langle j=k, m=\mu^{\prime}\right| \hat{J}_{i}|j=k, m=\mu\rangle . \tag{1}
\end{equation*}
$$

Or in a more explicit form for \hat{J}_{z} and $\hat{J}_{ \pm}=\hat{J}_{x} \pm i \hat{J}_{y}$,

$$
\begin{align*}
{\left[\hat{J}_{z}, \hat{T}_{\mu}^{(k)}\right] } & =\hbar \mu \times \hat{T}_{\mu}^{(k)}, \\
{\left[\hat{J}_{ \pm}, \hat{T}_{\mu}^{(k)}\right] } & =\hbar \sqrt{(k \mp \mu)(k+1 \pm \mu)} \times \hat{T}_{\mu \pm 1}^{(k)} . \tag{2}
\end{align*}
$$

(a) Show that under finite rotations $R(\phi, \mathbf{n})$, the components of a spherical tensor operator $\hat{T}^{(k)}$ transform into linear combinations of each other according to

$$
\begin{equation*}
\hat{\mathcal{R}}(\phi, \mathbf{n}) \hat{T}_{\mu}^{(k)} \hat{\mathcal{R}}^{\dagger}(\phi, \mathbf{n})=\sum_{\mu^{\prime}} T_{\mu^{\prime}}^{(k)} \times \mathcal{D}_{\mu^{\prime}, \mu}^{(j=k)}(\phi, \mathbf{n}) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{D}_{m^{\prime}, m}^{(j)}(\phi, \mathbf{n})=\left\langle j, m^{\prime}\right| \hat{\mathcal{R}}(\phi, \mathbf{n})|j, m\rangle, \tag{4}
\end{equation*}
$$

$c f$. homework set\#10, eqs. (16-17). Hint: use the Baker-Hausdorff lemma, cf. homework set\#9, eq. (11).
(b) Next, consider a vector operator $\hat{\mathbf{V}}$ obeying $\left[\hat{J}_{i}, \hat{V}_{j}\right]=i \hbar \epsilon_{i j k} \hat{V}_{k}$ (in Cartesian components of both \hat{J}_{i} and \hat{V}_{j}). Show that the spherical components

$$
\begin{equation*}
\hat{V}_{0}=\hat{V}_{z}, \quad \hat{V}_{ \pm 1}=\frac{\mp \hat{V}_{x}-i \hat{V}_{y}}{\sqrt{2}} \tag{5}
\end{equation*}
$$

obey the commutation relations (2) for $k=1$.
Please note that the $\hat{J}_{ \pm}$operators in eqs. (2) are defined using a different convention
than the spherical components $\hat{J}_{ \pm 1}$ of the vector operator $\hat{\mathbf{J}}$. Specifically, $\hat{J}_{ \pm} \stackrel{\text { def }}{=} \hat{J}_{x} \pm i \hat{J}_{y}$ while $\hat{J}_{+1}=-\hat{J}_{+} / \sqrt{2}$ and $\hat{J}_{-1}=+\hat{J}_{-} / \sqrt{2}$.
(c) Finally, consider a 2-index symmetric traceless tensor operator $\hat{T}_{i j}$,

$$
\begin{equation*}
\hat{T}_{j i}=+\hat{T}_{i j}, \quad \hat{T}_{i i}=0, \quad\left[\hat{J}_{i}, \hat{T}_{j k}\right]=i \hbar \epsilon_{i j m} \hat{T}_{m k}+i \hbar \epsilon_{i k m} \hat{T}_{j m} \tag{6}
\end{equation*}
$$

$c f$. homework set\#9, eq. (13) for the commutator. This tensor operator is equivalent to the rank 2 spherical tensor operator $\hat{T}^{(2)}$ with components:

$$
\begin{align*}
& \hat{T}_{ \pm 2}^{(2)}=\frac{1}{2}\left(\hat{T}_{x x}-\hat{T}_{y y}\right) \pm i \hat{T}_{x y} \\
& \hat{T}_{ \pm 1}^{(2)}=\mp \hat{T}_{x z}-i \hat{T}_{y z} \tag{7}\\
& \hat{T}_{0}^{(2)}=\sqrt{\frac{1}{6}}\left(2 \hat{T}_{z z}-\hat{T}_{x x}-\hat{T}_{y y}\right)
\end{align*}
$$

Verify that these component operator obey the commutation relations (2) for $k=2$.
2. This second problem is about a completely different subject, the perturbation theory. Consider a particle in a two-dimensional infinitely deep square well; the un-perturbed Hamiltonian is

$$
\hat{H}_{0}=\frac{\hat{p}_{x}^{2}+\hat{p}_{y}^{2}}{2 m}+V_{0}(\hat{x}, \hat{y}) \quad \text { for } \quad V_{0}(x, y)= \begin{cases}0 & \text { for } 0 \leq x, y \leq L \tag{8}\\ +\infty & \text { everywhere else }\end{cases}
$$

(a) Diagonalize this un-perturbed Hamiltonian. That is, calculate all of its eigenvalues and write down the wave-functions of the corresponding eigenstates.
(b) Now let's perturb the Hamiltonian (8) by a small change to the potential

$$
\begin{equation*}
\delta V(x, y)=\lambda(x+y-L)^{2}=\lambda\left(x-\frac{1}{2} L\right)^{2}+\lambda\left(y-\frac{1}{2} L\right)^{2}+2 \lambda\left(x-\frac{1}{2} L\right)\left(y-\frac{1}{2} L\right) . \tag{9}
\end{equation*}
$$

Focus on the 3 lowest-energy eigenstates of the perturbed Hamiltonian and calculate their energies to the first order in λ.

Hints: All 2d integrals you may need to evaluate for this problem can be written as are sums of products of 1 d integrals. And here are some 1d integrals you may find useful:

$$
\begin{align*}
& \text { for integer } k>0 \text { : } \\
& \qquad \int_{0}^{L} d x \cos \frac{k \pi x}{L}=0 \tag{10}\\
& \int_{0}^{L} d x x \times \cos \frac{k \pi x}{L}=\frac{L^{2}}{k^{2} \pi^{2}} \times\left((-1)^{k}-1\right), \tag{11}\\
& \int_{0}^{L} d x x^{2} \times \cos \frac{k \pi x}{L}=\frac{2 L^{3}}{k^{2} \pi^{2}} \times(-1)^{k} . \tag{12}
\end{align*}
$$

