
QUANTA
Multiple Oscillators

Consider an N -dimensional harmonic oscillator. Or more generally, a system with N

degrees of freedom q1, . . . , qn, each being a harmonic oscillator. In terms of quantum oper-

ators, this means N position operators q̂1, . . . , q̂N and N momentum operators p̂1, . . . , p̂N

obeying the canonical commutation relations

[q̂α, q̂β] = 0, [p̂α, p̂β] = 0, [q̂α, p̂β] = ih̄δαβ , α, β = 1, . . . , N, (1)

and the Hamiltonian operator

Ĥ =
N∑
α=1

(
1

2mα
p̂2
α +

mαω
2
α

2
q̂2
α

)
. (2)

To diagonalize this Hamiltonian, we define raising and lowering operators for each

mode α,

âα =
mαωαq̂α + ip̂α√

2h̄ωαmα
, â†α =

mαωαq̂α − ip̂α√
2h̄ωαmα

, (3)

then for each mode [âα, â
†
α] = 1 but the raising and lowering operators for different modes

α 6= β commute with each other, thus,

∀α, β = 1, . . . , N : [âα, âβ] = 0, [â†α, â
†
β] = 0, [âα, â

†
β] = δαβ . (4)

Consequently, the number operators

n̂α = â†αâα (5)

commute with each other, so we may diagonalize all of them in the same basis {|n1, . . . , nN 〉}.
As we have learned for a single oscillator, the spectrum of each n̂α comprises non-negative

integers nα = 0, 1, 2, . . .. Moreover, each nα can take any non-negative integer value inde-

pendently of all other nβ.
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To see this independence, note the raising and lowering operators â†α and âα commute

with the numbering operators n̂β for other modes β 6= α,

[â†α, n̂β] = +δαβ â
†
α , [âα, n̂β] = −δαβ âα , (6)

hence in the {|n1, . . . , nN 〉} basis the âα and the â†α leave all the n̂β 6=α unchanged while

lowering or raising the nα. Specifically,

â†α
∣∣{nβ}〉 =

√
nα + 1

∣∣{n′β = nβ + δαβ}
〉
,

âα
∣∣{nβ}〉 =

{√
nα

∣∣∣{n′β = nβ − δαβ}
〉

for nα > 0,

0 for nα = 0.

(7)

Consequently, for any combination of non-negative integers (n1, . . . , nN ) there does exist a

quantum state with these eigenvalues of the (n̂1, . . . , n̂N ) operators, namely

|n1, . . . , nN 〉 =
∏
α

1√
nα!

∏
α

(
â†α
)nα |0, . . . , 0〉 . (8)

Note: in the wave-function language, the quantum states of this system is described by wave-

functions ψ(q1, . . . , qN ) depending on all N ‘coordinates’ q1, . . . , qN (but not on the momenta

p1, . . . , pN ) rather than wave-functions ψ1(q1), . . . , ψN (qN ) of the individual coordinates.

However, for the states (8) the wave-function of the whole state happens to factorize into

wave-functions of the individual harmonic oscillators:

〈q1, . . . , qn|n1, . . . , nN 〉 =
N∏
α=1

〈qα|nα〉 ,

i. e., ψn1,...,nN (q1, . . . , qN ) =
N∏
α=1

ψosc
nα (qα).

(9)

Finally, in the Hamiltonian (2), for each mode α we have

1

2mα
p̂2
α +

mαω
2
α

2
q̂2
α = h̄ωα

(
n̂α + 1

2

)
, (10)
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exactly as we had earlier for a single oscillator, hence

Ĥ =
N∑
α=1

h̄ωα
(
n̂α + 1

2

)
. (11)

Therefore, each of the |n1, . . . , nN 〉 states is an eigenstate of the Hamiltonian,

Ĥ |n1, . . . , nN 〉 = E(n1, . . . n1) |n1, . . . , nN 〉 (12)

with energy

E(n1, . . . n1) =
N∑
α=1

h̄ωα
(
nα + 1

2

)
. (13)

In particular, the ground state — i.e., the lowest-energy eigenstate — of the multi-oscillator

system is the state |0, 0, . . . , 0〉 where all nα = 0; it’s energy

E0 =
N∑
α=1

h̄ωα
2

(14)

is the sum of zero-point energies of all the oscillators.

Up to this point we have assumed a finite number N of the oscillator modes α = 1, . . . , N .

However, all the above formulae apply just as well to the systems with practically infinite

numbers of modes, like the vibrations of a macroscopically large crystal. Or even literally

infinite numbers of modes, like a free quantum field — or several related fields like the electric

and the magnetic fields. Later in these notes we shall see a couple examples of such infinite

families of oscillator modes.

Phonons

As a toy model of free quantum field, consider the transverse waves on a string y(x, t)

tied at both ends, x = 0 and x = L. Classically, this string has an infinite series of standing
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wave modes,

y(x, t) =
∞∑
α=1

yα(t)×
√

2 sin(kαx), kα = α× π

L
, (15)

where each mode yα(t) oscillates harmonically with frequency

ωα = v × kα = α× πv

L
, (16)

v =
√
T/µ being the speed of waves on the string.

Dynamically, the Lagrangian for the string vibrations is

L =

L∫
0

dx

(
µ

2

(
∂y

∂t

)2

− T

2

(
∂y

∂x

)2
)
, (17)

which after Fourier transforming to the standing wave modes yα(t) becomes

L =
∞∑
α=1

(
µL

2
ẏ2
α −

TLk2
α

2
y2
α

)
. (18)

Consequently, in the Hamiltonian formalism the canonical momenta conjugate to the yα are

pα = µLẏα and the Hamiltonian function is

H(q1, . . . ; p1, . . .) =
∞∑
α=1

(
p2
α

2µL
+
TLk2

α

2
y2
α

)
(19)

where

TLk2
α

2
=

µv2Lk2
α

2
=

µLω2
α

2
. (20)

In other words, the Hamiltonian (19) describes an infinite series of harmonic oscillators with

frequencies ωα.

4



In the quantum theory the the vibrating string, the canonical positions yα(t) and mo-

menta pα(t) becomes Hermitian operators ŷα and p̂α obeying the canonical commutation

relations

[ŷα, ŷβ] = 0, [p̂α, p̂β] = 0, [ŷα, p̂β] = ih̄δαβ , (21)

and the Hamiltonian operator for the string follows from the classical Hamiltonian func-

tion (19),

Ĥ =
∞∑
α=1

(
p̂2
α

2µL
+
µLω2

α

2
ŷ2
α

)
. (22)

To diagonalize this Hamiltonian, we proceed exactly as we had for a finite number of modes

α: We build the lowering and raising operators âα and â†α for each α = 1, 2, . . . ,∞, let

n̂α = â†αâα, diagonalize all the n̂α operators at once since they all commute with each other,

and end up with the basis of states

|infinite list n1, n2, . . .〉 (23)

where each nα runs over non-negative integers 0, 1, 2, . . . independently from all other nβ. In

terms of the n̂α operators, the Hamiltonian is

Ĥ =
∞∑
α=0

h̄ωα(n̂α + 1
2), (24)

so its eigenstates are all the states (23),

Ĥ |n1, n2, . . .〉 = E(n1, n2, . . .) |n1, n2, . . .〉 , (25)

with energies

E(n1, n2, . . .) =
∞∑
α=0

h̄ωα(nα + 1
2). (26)

Physically, each nα — the excitation level of the oscillator mode α — can be thought as
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the number of quanta of that mode, so let’s define the net number of quanta in all the modes

N =
∞∑
α=0

nα (27)

and the operator

N̂ =
∞∑
α=0

n̂α (28)

measuring this net number of quanta. Also, let’s split the Hilbert space H of the whole

multi-oscillator system into subspaces HN of definite N , i.e. into spaces of N̂ ’s eigen-spaces

for each eigenvalue N . As for any Hermitian operators, such eigen-spaces add up to the

whole Hilbert space in the tensor sum sense,

H =
∞⊕
N=0

HN = H0 ⊕ H1 ⊕ H2 ⊕ H3 ⊕ · · · , (29)

meaning that any vector |Ψ〉 in H decomposes into a sum of |ΨN 〉 ∈ HN . In a moment, we

shall see that each HN can be re-interpreted as a Hilbert space on its own right, namely the

Hilbert space of N quasi-particles.

To see how that works, let’s take a closer look at the individual HN subspaces, especially

for the low N = 0, 1, 2. But first, notice that we may build a complete orthonormal basis of

each NH by simply grouping the states |n1, n2, . . .〉 according to their net numbers of quanta:

the states |n1, n2, . . .〉 with
∑
α

nα = given N form basis of the HN , (30)

or equivalently,

each HN spans the states |n1, n2, . . .〉 with
∑
α

nα = N . (31)

Now let’s focus on the N = 0 subspace. The only way for non-negative integers nα to

add up to N = 0 is to have all nα = 0. Consequently, the H0 is a one-dimensional Hilbert
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space spanning the ground state |0, 0, . . .〉 of the quantum vibrating string. The energy (14)

of this ground state is

E0 =
∞∑
α=1

h̄ωα
2

for ωα =
πv

L
× α, (32)

where the infinite sum is badly divergent, so it needs to be regularized.

In real life, the regularization follows from the string being made from atoms. Conse-

quently, it does not have a literally infinite number of vibration modes, just a very large

number O(#atoms), so the ground state energy (32) is not really quite infinite but merely

macroscopic rather than microscopic. Physically, we may treat it as a part of the chemical

binding energy of the string, and since it does not depend on the vibrational state we may

disregard it from our analysis of the vibrational quanta. Indeed, we may always add a con-

stant (times a unit operator) to the Hamiltonian without affecting the systems dynamics in

any meaningful way, so for the quantum string we simply re-define

Ĥ ′ = Ĥ − E0 =
∞∑
α=1

h̄ωα × n̂α . (33)

Consequently, the ground state has E′(0, 0, . . .) = 0 while all the excited states of the Hamil-

tonian have positive energies

E′(n1, n2, . . .) =
∞∑
α=1

h̄ωα × nα . (34)

On the other hand, if we treat the vibrating string as a toy model of a one-dimensional

QFT which leaves in a truly continuous space, then there is a truly infinite number of modes α

and the zero-point energy (32) is truly divergent. Alas, quantum field theories are full of

divergences, and over the years learned how to regulate and subtract such divergences to

obtain physically correct finite results, although the techniques for doing so are beyond the

scope of this quantum mechanics class. For the present purposes, let me simply say that the

E0 is a constant which commutes with any operators relevant to the waves on the string, so

we are free to subtract in from the Hamiltonian as in eqs. (33) and (34) even if E0 happens

to be a divergent constant.
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Next, consider the H1 subspace of states with one quantum in any mode. Indeed, if the

non-negative integers nβ add up to N = 1 then there is one mode α with nα = 1 and every

other mode β 6= α has nβ = 0. Let’s re-label such a state

∣∣nα = 1, all other nβ = 0
〉

= |α〉 , (35)

so we may re-interpret it as a quantum state of a some particle or quasiparticle of energy

E(α) =
∞∑
β=1

h̄ωβ ×
(
nβ = δβ,α

)
= h̄ωα. (36)

To make better sense of this quasiparticle state, let’s treat the x-dependence of the mode α,

yα × const× sin(kαx), kα =
πα

L
, (37)

as a wave-function of the quasiparticle,

ψα(x) = const× sin
(
kαx =

παx

L

)
(38)

with energy

E(α) = h̄ωα = h̄vkα . (39)

Physically, the wave-functions (38) describe a 1d (quasi)particle with momentum P = ±h̄kα
bouncing back and forth off the reflecting walls at x = 0 and x = L, hence the discrete

spectrum of kα = (π/L)× integerα and having both P = +h̄kα and P = −h̄kα components

being present at equal strengths. Moreover, in terms of the momentum P , the energy (39)

is E = v|P |, so each state |α〉 is an eigenstate of a single-(quasi)particle Hamiltonian

Ĥ1 = v abs(P̂ ) = v
√
P̂ 2 . (40)

This Hamiltonian belongs to a quasi-particle which moves left or right with a constant

speed v, namely the speed of waves on the string. Treating these waves as a kind of transverse

sound waves, we identify the quanta waves’ as one-dimensional phonons.
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From the phonon point of view, the H1 is the Hilbert space of the one-phonon states, Ĥ1

in the Hamiltonian operator for such single phonons, and the states |α〉 are the eigenstates

of that Hamiltonian Ĥ1.

Next, consider the H2 subspace, which we are going to re-interpret as a two-phonon

Hilbert space. The basis of this subspace is made from states |n1, n2, . . .〉 where the nγ add

up to 2. Since all the nγ are non-negative integers, there are two possibilities:

|α, α〉 = |nα = 2, all other nγ = 0〉 ,(1)

|α, β〉 =
∣∣nα = nβ = 1, all other nγ = 0

〉
,(2)

or in terms of raising operators acting on the ground state,

|α, α〉 =
1√
2
â†αâ

†
α |ground〉 , (41)

or

|α, β〉 = â†αâ
†
β |ground〉 for α 6= β. (42)

Either way — for α 6= β or for α = β, — the state |α, β〉 =
∣∣{nγ = δγ,α + δγ,β}

〉
is an

eigenstate of the Hamiltonian (33) with energy

E′(α, β) =
∑
γ

h̄ωγ × (nγ = δγ,α + δγ,β) = h̄ωα + h̄ωβ , (43)

so we interpret it as a state of two independent phonons, one in state |α〉 and the other in

state |β〉, and their respective energies h̄ωα and h̄ωβ add up to the net energy (43). Thus,

the H2 subspace becomes the two-phonon Hilbert space, with the net Hamiltonian

Ĥ2 = Ĥ1(1st phonon) + Ĥ1(2nd phonon) =

√
P̂ 2

1 +

√
P̂ 2

2 . (44)

However, the two phonons in this Hilbert space are not completely independent because

we cannot tell which phonon is which: for α 6= β

|α, β〉 = â†αâ
†
β |ground〉 = â†β â

†
α |ground〉 = |β, α〉 . (45)

Please note: the states |α, β〉 and |β, α〉 are not just similar, but are literally the same single

state in the Hilbert space, so it’s utterly impossible to tell which phonon is first and which is
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second. Thus, the phonons are identical bosons, so the H2 is not just a two-particle Hilbert

space but the Hilbert space of two identical bosons.

Note: by identical bosons I do not means particles which have to be in the same state but

merely particles of the same species, so we cannot tell them apart except by their quantum

states. Thus, we can have two phonons in different quantum states |α〉 6= |β〉, and we can

say that the phonon in state |α〉 has energy h̄ωα while the phonon in state |β〉 has energy

h̄ωβ. But we cannot say which of the 2 phonons is in state |α〉 and which is in state |β〉.

For N ≥ 2 the situation is similar to N = 2: The HN is the N –phonon Hilbert space

where all N phonons are identical bosons. For example, for N = 3 the H3 space spans the

states

|α, β, γ〉 = Cα,β,γ â
†
αâ
†
β â
†
γ |ground〉 ,

where Cα,β,γ =


1√
3!

if α = β = γ,

1√
2!

if two of the α, β, γ coincide but the third is different,

1 if α, β, γ are all different from each other,

(46)

and all such states have definite energies

E′(α, β, γ) = h̄ωα + h̄ωβ + h̄ωγ . (47)

This allows us to re-interpret the H3 as a Hilbert space of 3 quasiparticles, each quasiparticle

being a phonon, with the net Hamiltonian

Ĥ3 = Ĥ1(1st phonon) + Ĥ1(2nd phonon) + Ĥ1(3rd phonon) =

√
P̂ 2

1 +

√
P̂ 2

2 +

√
P̂ 2

3 .

(48)

However, the states (46) do not distinguish which phonon is first, which is second and which

is third; instead

|any permutation of α, β, γ〉 = |α, β, γ〉 , (49)

so the 3 phonons in the H3 Hilbert space are 3 identical bosons rather than 3 distinguishable

particles.
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Likewise, for larger N > 3 the HN spans the N phonon states

|α1, α2, . . . , αN 〉 =

(
combinatorical

factor

)
× â†α1

â†α2
· · · â†αN |ground〉 , (50)

where in terms of the occupation numbers nα, the list (α1, . . . , αN ) includes all α with

nα > 0, and each such α appears nα times in the list. The states (50) have energies

E(αi, . . . , αN ) =
∑
β

h̄ωβ ×

(
nβ =

N∑
i=1

δβ,αi

)
=

N∑
i=1

h̄ωα =
N∑
i=1

vh̄kα (51)

which are simply sums of the individual phonons’ energies, so we may interpret them as

eigenstates of the N –phonon Hamiltonian

ĤN =
N∑
i=1

√
P̂ 2
i (52)

where the phonons do not interact with each other.

Moreover, each phonon can be in any single-particle state |α〉 independently from the

other phonons, but given the list (α1, . . . , αN ) of states taken by the N phonons, we cannot

tell which of phonons take which state. Instead,

|any permutation of α1, . . . , αN 〉 = |α1, . . . , αN 〉 , (53)

so the N phonons are N identical bosons.

Coherent states

Finally, let me go back to the complete Hilbert space H of the vibrating string. This

space spans the states |n1, n2, . . .〉 with all net numbers N of quanta. (Although if we wish

to limit ourselves to states of finite energy E′ relative to the ground state, then the net

number of quanta should be finite, but it can be arbitrarily large without a limit.) From the

phonon’s point of view, this space

H = H0 ⊕ H1 ⊕ H2 ⊕ H3 ⊕ · · · (54)

is the Hilbert space of an arbitrary number of identical phonons. By the superposition princi-

ple, it includes linear combinations of states with different phonon numbers. In particular, it
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includes the coherent states of the vibrating string which describe the almost-classical waves

ȳ(x, t) = 〈ŷ(x)〉 (t).

The coherent states of a single harmonic oscillator are explained in detain in the current

homework (set#5, problems 2 and 3). Basically, a coherent state is the quantum state

which reproduces the classical harmonic oscillations as closely as possible in the quantum

mechanics. Specifically, a coherent state has minimal uncertainties of position and momenta

(same as the oscillator’s ground state) which multiply to ∆q×∆p = h̄
2 , while the expectation

values 〈q〉 (t) and 〈p〉 (t) oscillate like the q(t) and p(t) of a classical oscillator,

〈q〉 (t) = A sin(ωt− φ), 〈p〉 (t) = Aωm cos(ωt− φ). (55)

Also, a coherent state does not have a definite energy; instead, the average energy of a coher-

ent state is the zero-point energy plus the classical energy of oscillations with amplitude A,

〈E〉 = E0 + Eclassical(A) =
h̄ω

2
+

mω2

2
× A2 (56)

while the energy uncertainty is

∆E =
√
h̄ω × Eclassical =⇒ for Eclassical � h̄ω, ∆E � 〈E〉 . (57)

In terms of the raising and lowering operators, the coherent states are

|ξ〉 = e−|ξ|
2/2 exp(ξâ†) |0〉 , â |ξ〉 = ξ |ξ〉 (58)

for

ξ =

√
2

h̄ωm

(
ωm 〈x〉 + i 〈p〉). (59)

Under classical harmonic oscillation (55), the complex parameter ξ evolves with time as

ξ(t) = iA

√
2ωm

h̄
× e−iωt, (60)

consequently, the coherent state |ξ(t)〉 — or rather |ψ〉 (t) = e−iωt/2 |ξ(t)〉 — obeys the

Schrödinger equation.
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The multi-oscillator system like the vibrating string also have coherent states, which

behave as classically as possible in quantum mechanics. Specifically, in a coherent state of a

multi-oscillator system each oscillator mode α is in a coherent state |ξα〉,

|ξ1, ξ2, . . .〉 = |ξ1〉 ⊗ |ξ2〉 ⊗ · · · (61)

where ⊗ denotes direct product of the quantum states of separate degrees of freedom; in

the wave-function language ψ(q1, q2, . . .) = ψ1(q1)ψ2(q2) · · ·. Or in terms of the raising and

lowering operators:

|ξ1, ξ2, . . .〉 =
⊗
α

(
e−|ξ|

2/2eξâ
†
|0〉
)
α

=
∏
α

exp(−1
2 |ξα|

2) exp(ξαâ
†
α) |ground〉

= exp

(
−1

2

∑
α

|ξα|2
)
× exp

(∑
α

ξαâ
†
α

)
|ground〉 ,

(62)

while

∀α : âα |ξ1, ξ2, . . .〉 = ξα |ξ1, ξ2, . . .〉 . (63)

In such a coherent state, each oscillator mode α has minimal uncertainties ∆yα ×∆pα = h̄
2

while the expectation values 〈yα〉 and 〈pα〉 follow from the real and imaginary parts of the

complex parameter ξα,

〈yα〉 =

√
2h̄

ωαµL
× Re ξα , 〈pα〉 =

√
2h̄ωαµL× Im ξα . (64)

For each oscillator mode α, the ξα parameter evolves with time as

ξα(t) = ξα(0)× e−iωαt, (65)

which makes the coherent state |ξ1(t), ξ2(t), . . .〉 obey the time-dependent Schrödinger equa-

tion

ih̄
d

dt
|ξ1(t), ξ2(t), . . .〉 = Ĥ ′ |ξ1(t), ξ2(t), . . .〉 (66)

while the expectation values (64) oscillate harmonically as in a classical oscillator. Or in
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terms of the vibrating string itself,

〈ŷ(x)〉 (t) = 2

√
h̄

µL

n∑
α=1

1
√
ωα
× Re ξα(t)× sin(kαx),

d

dt
〈ŷ(x)〉 = 2

√
h̄

µL

n∑
α=1

√
ωα × Im ξα(t)× sin(kαx),

(67)

which obey the classical wave equation(
∂2

∂t2
+ v2 ∂

2

∂x2

)
〈ŷ(x)〉 (t) = 0. (68)

Finally, while the coherent states do not have definite energies, the average energy of a

coherent state above the ground-state energy is equal to the classical energy of the oscillations

with the same amplitude,

Aα = amplitude[〈yα〉 (t)] =

√
2h̄

ωαµL
× |ξα|, (69)

〈
E′
〉

= 〈E〉 − E0 =
∑
α

h̄ωα|ξα|2 =
∑
α

µLω2
α

2
× A2

α. (70)

As to the energy uncertainty,

(∆E)2 =
∑
α

h̄2ω2
α|ξα|2, (71)

so as long as some |ξα| are large, the energy uncertainty is relatively small, ∆E � 〈E′〉.

Electromagnetic Fields and Photons

Just like the waves on a finite piece of string, the electromagnetic fields in a reflecting

cavity also decompose into an infinite series of standing waves, each such wave acting as a

harmonic oscillator. Thus, we may diagonalize the Hamiltonian of the whole series in terms

of definite number of quanta for each mode, and when we focus on the subspace of states

having N quanta altogether, we get a Hilbert space of N identical bosons, where each boson

is a massless relativistic particle with 2 polarization states — the photon.
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In this section of my notes, I show how this works in outline, but I skip some of the gory

algebraic details. If you are seriously interested in the quantum EM fields, take a class in

quantum field theory (I should be teaching it in 2022/23), although the 389 L class (second

semester of the graduate quantum mechanics) should also cover some of this material.

The classical EM fields obey Maxwell equations, which in the absence of any charges

and currents become

∇ · E = ∇ ·B = 0, (72)

∂B

∂t
= −c∇× E,

∂E

∂t
= +c∇×B. (73)

In infinite space, these equations allow for EM waves with any wave-vectors k, so to get a

discrete spectrum of the wave modes we need to put the EM fields in a finite-size box. For

simplicity, let’s take a large cubic box of side L with periodic boundary conditions

ψ(x, y, z) = ψ(x+ L, y, z) = ψ(x, y + L, z) = ψ(x, y, z + L) (74)

for ψ = Ex, Ey, Ez, Bx, By, Bz. Consequently, the wave modes in this box become

ψ(x) = exp(ik · x) for (kx, ky, kz) =
2π

L
(integer, integer, integer) (75)

where each integer can be positive negative or zero. This allows us to Fourier transform a

continuous (but periodic) field to a discrete series of wave modes,

ψ(x, t) = L−3/2
∑
k

eik·x × ψk(t), ψk(t) = L−3/2

∫
d3xe−ik·x × ψ(x, t). (76)

Or for the vector fields E and B,

E(x, t) = L−3/2
∑
k

eik·x × Ek(t), Ek(t) = L−3/2

∫
d3xe−ik·x × E(x, t),

B(x, t) = L−3/2
∑
k

eik·x ×Bk(t), Bk(t) = L−3/2

∫
d3xe−ik·x ×B(x, t).

(77)

In terms of these field modes, the time-independent Maxwell equation (72) become

k · Ek = k ·Bk = 0, (78)

so for each k we now need a basis of two polarization vectors ⊥ k. Let’s use the helicity
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basis of unit vectors ek,λ obeying

−ik× ek,λ = λ|k| ek,λ , λ = ±1 only; (79)

for example,

for k in + z direction : ek,λ =
1√
2

(1, λi, 0). (80)

These are complex unit vectors, so the orthonormality condition becomes

e∗k,λ · ek,λ′ = δλ,λ′ ; (81)

there are also commonly used phase conventions

ek,± = e∗k,∓ and e−k,λ = e+k,−λ . (82)

Anyhow, having a basis of vectors ⊥ k allows us to decompose the vector modes Ek and

Bk into two independent transverse polarizations,

Ek =
∑
λ

Ek,λ ek,λ , Bk =
∑
λ

Bk,λ ek,λ , (83)

and hence the EM fields decompose into

E(x, t) = L−3/2
∑
k,λ

eik·xek,λEk,λ(t) and B(x, t) = L−3/2
∑
k,λ

eik·xek,λBk,λ(t). (84)

Note: the EM fields E(x, t) and B(x, t) are real, but due to complex coefficients in the mode

expansion (84), the Ek,λ(t) and Bk,λ(t) are are complex but are related to each other by
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complex conjugation,

E∗k,λ = E−k,λ and B∗k,λ = B−k,λ . (85)

In terms of the modes (84), the EM energy

H =
1

8π

∫
d3x
(
E2 + B2

)
(86)

becomes

H =
1

8π

∑
k,λ

(
E∗k,λEk,λ + B∗k,λBk,λ

)
, (87)

the time-independent Maxwell equations (72) are automatically satisfied, while the time-

dependent Maxwell equations (73) become oscillator-like equations for each mode:

d

dt
Ek,λ = −λωkBk,λ ,

d

dt
Bk,λ = +λωkEk,λ , for ωk = c|k|. (88)

In the quantum theory, the mode coefficients Ek,λ(t) and Bk,λ(t) become operators Êk,λ

and B̂k,λ obeying skewed Hermiticity conditions

Ê†k,λ = Ê−k,λ , B̂†k,λ = B̂−k,λ , (89)

The classical energy (87) becomes the Hamiltonian operator

Ĥ =
1

8π

∑
k,λ

(
Ê†k,λÊk,λ + B̂†k,λB̂k,λ

)
. (90)

and to reproduce the time-dependent Maxwell equations (88) as Heisenberg equations in

quantum mechanics — or as Heisenberg–Dirac equations in the Schrödinger picture — from
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the Hamiltonian (90), we need the commutation relations[
B̂k,λ, B̂

†
k′,λ′

]
= 0,

[
Êk,λ, Ê

†
k′,λ′

]
= 0,

[
B̂k,λ, Ê

†
k′,λ′

]
= 4πih̄cλ|k| × δk,k′δλ,λ′ ,

(91)

which provide for

1

ih̄

[
Êk,λ, Ĥ

]
= +λc|k| × B̂k,λ ,

1

ih̄

[
B̂k,λ, Ĥ

]
= −λc|k| × Êk,λ , (92)

and hence Maxwell-like Heisenberg–Dirac equations

d

dt

〈
Ek,λ

〉
= −λc|k| ×

〈
Bk,λ

〉
,

d

dt

〈
Bk,λ

〉
= +λc|k| ×

〈
Ek,λ

〉
, (93)

cf. eqs. (88). To save time, let me skip the derivation of these formulae, or rather leave it as

an optional extra exercise for the interested students.

Given the commutation relations (91), we define the lowering and raising operators for

each mode as

âk,λ =
λB̂k,λ + iÊk,λ√

8πh̄ωk
, (94)

â†k,λ =
λB̂†k,λ − iÊ†k,λ√

8πh̄ωk
=

λB̂−k,λ − iÊ−k,λ√
8πh̄ωk

, (95)

â−k,λ =
λB̂−k,λ + iÊ−k,λ√

8πh̄ωk
6= â†k,λ , (96)

â†−k,λ =
λB̂k,λ − iÊk,λ√

8πh̄ωk
6= ak,λ . (97)

Note: despite the skewed Hermiticity conditions (89) for the field modes Ê±k,λ and B̂±k,λ,

the lowering and the raising operators for opposite momenta ±k are independent from each

other.

As usual, the lowering and raising operators (94) through (97) obey the commutation

relations [
âk,λ, âk′,λ′

]
= 0,

[
â†k,λ, â

†
k′,λ′

]
= 0,

[
âk,λ, â

†
k′,λ′

]
= δk,k′δλ,λ′ . (98)

although verifying these relations takes a bit more work then usual due to non-Hermiticity

of the Êk,λ and B̂k,λ operators. For the same reason, it takes more work then usual rewrite
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the Hamiltonian (90) in the multi-oscillator form

Ĥ =
∑
k,λ

h̄ωk
(
â†k,λâk,λ + 1

2) = E0 +
∑
k,λ

h̄ωkâ
†
k,λâk,λ . (99)

To save time, let me skip the derivation of eqs. (98) and (99) and leave them as an optional

extra exercise to the students.

But once we got the commutation relations (98) and the Hamiltonian (99), we may

proceed exactly as we did for the wave on a string. Thus, we define the number of quanta

operators n̂k,λ = â†k,λâk,λ for each mode, diagonalize them all (since they all commute with

each other), and build a basis of states
∣∣{nk,λ}〉 where each nk,λ runs over all non-negative

integers 0, 1, 2, . . . independently of all the other nk′,λ′ . Thanks to eq. (99), all these states

are eigenvalues of the Hamiltonian with energies

E({nk,λ}) = E0 +
∑
k,λ

h̄ωknk,λ (100)

where E0 is the ground state energy. The E0 is badly divergent, but it’s a constant which

does not affect the dynamics of the EM fields, so we may just as well subtract it from the

Hamiltonian,

Ĥ ′ = Ĥ − E0 =
∑
k,λ

h̄ωkâ
†
k,λâk,λ =⇒ E′({nk,λ}) =

∑
k,λ

h̄ωknk,λ . (101)

Next, we reorganize the basic states
∣∣{nk,λ}〉 by the net number of quanta

N =
∑
k,λ

nk,λ (102)

in all the modes. In other words, we split the Hilbert space of the EM fields in the box into

a tensor sum of eigen-blocks of the N̂ =
∑

k,λ n̂k,λ operator,

H =
∞⊕
N=0

HN = H0 ⊕ H1 ⊕ H2 ⊕ · · · , (103)

where the states
∣∣{nk,λ}〉 with

∑
k,λ nk,λ = N serve as a basis of the N –quanta Hilbert

space HN .
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Similar to the phonon case, the H0 space spans a single quantum state |all nα = 0〉 which

has no quanta at all. From the photonic point of view — which I shall explain in a moment

— this is the vacuum state without any photons.

Next, the H1 space spans the states having one quantum in one mode k, λ and no quanta

at all in all the other modes,

|(k, λ)〉 =
∣∣nk,λ = 1, all other nk′,λ′ = 0

〉
. (104)

These states are labeled by modes (k, λ), which me may interpret as quantum states of a

single particle, then their energies

E′(k, λ) = h̄ωk = h̄c|k| (105)

may be interpret as energy levels of that particle. Since the EM fields of the mode k, λ are

proportional to

E(x) ∝ eik·x ek,λ, B(x) ∝ eik·x ek,λ, (106)

where

kx, ky, kz run over
2π

L
× integers, (107)

we may interpret P = h̄k as the particle’s momentum, while the conditions (107) on that mo-

mentum stem from the particle living in a cubic box with the periodic boundary conditions.

Consequently, the energies (105) become

E(P) = c|P|, (108)

which are appropriate for a massless relativistic particle — the photon. In Hamiltonian

terms, they are eigenvalues of the

Ĥ1 = c
√

P̂2. (109)

Besides momentum P = h̄k, the single photon states |k, λ〉 are labeled by helicity λ = ±1

Thus, the photon has two distinct transverse polarization states. These polarization states
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play a similar role to the electron’s spin states, but their relation to the angular momentum

is different from the spin.

At the N = 2 level, the H2 space spans the states

∣∣(k, λ), (k, λ)′
〉

= C × â†k,λâ
†
k′,λ′ |vacuum〉

where C =

{ 1√
2

if k = k′ and λ = λ′,

1 otherwise.

(110)

These states have energies

E((k, λ), (k, λ)′) = E(k, λ) + E(k′, λ′) = h̄c|k| + h̄c|k′| (111)

appropriate for two non-interacting photons with Hamiltonian

Ĥ2 = Ĥ1(1st photon) + Ĥ1(2nd photon) = c

√
P̂2

1 + c

√
P̂2

2. (112)

Moreover, each photon here can have any allowed momentum P = h̄k and polarization λ

independently of the other photon. However, we cannot tell which photon is the first and

which is the second; instead,

∣∣(k, λ), (k, λ)′
〉

=
∣∣(k, λ)′, (k, λ)

〉
, (113)

so the photons are identical bosons.

Likewise, for N > 2 the HN space is a space of N identical bosons, each boson being a

photon — a massless relativistic particle with two distinct polarization states. Each photon in

this space may have any momentum allowed by the boundary conditions and any polarization

independently from the other N − 1 photons, but we cannot tell which photon is which

because they are identical bosons.

Note: reorganizing the net Hilbert space H of the EM fields in the cavity into subspaces

HN of definite net numbers N of quanta makes it easy to see the photons and the N –photon

states; that’s how we have learned that the photon is a massless relativistic particle with
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two polarization states |λ〉, and that the multiple photons are identical bosons. On the other

hand, the decomposition

H =
∞⊕
N=0

HN = H0 ⊕ H1 ⊕ H2 ⊕ · · · (114)

makes it harder to analyze the states which do not have definite N but rather several

components with different N ’s. So in the next section, we shall focus on the coherent states

— which do not have definite nk,λ or definite Ntotal — but instead describe the semiclassical

EM waves.

Coherent states and semiclassical EM waves

Similar to a single harmonic oscillator or the wave on a string, the best wave to reproduce

the classical time-dependent electromagnetic fields in quantum mechanics is in terms of the

coherent states. For example, consider the coherent state ξ of a particular move (k, λ) while

all the other modes are in the ground state,

|k, λ : ξ〉 = e−|ξ|
2/2 exp(ξâ†k,λ) |vacuum〉 ; (115)

this state obeys the Schrödinger equation

ih̄
d

dt
|k, λ : ξ(t)〉 = Ĥ ′ |k, λ : ξ(t)〉 for ξ(t) = ξ(0)× e−iωkt. (116)

In this coherent state,

〈
Êk,λ

〉
(t) =

√
2πh̄ωk ×

(
−iξ = −iξ0e

−iωkt), (117)〈
Ê−k,λ

〉
(t) =

√
2πh̄ωk ×

(
+iξ∗ = +iξ∗0e

+iωkt
)
, (118)〈

Êk′,λ′

〉
(t) = 0 for all other (k′, λ′) 6= (±k, λ), (119)

and likewise
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〈
B̂k,λ

〉
(t) =

√
2πh̄ωk ×

(
λξ = λξ0e

−iωkt), (120)〈
B̂−k,λ

〉
(t) =

√
2πh̄ωk ×

(
λξ∗ = λξ∗0e

+iωkt
)
, (121)〈

B̂k′,λ′

〉
(t) = 0 for all other (k′, λ′) 6= (±k, λ). (122)

Consequently, adding up the EM fields of all the modes in the cavity, we get

〈
Ê(x)

〉
(t) = L−3/2

∑
k′,λ′

eik
′·x ek′,λ′

〈
Êk′,λ′

〉
(t)

=

√
2πh̄ωk
L3

eik·xek,λ (−iξ0)e−iωkt

+

√
2πh̄ωk
L3

e−ik·x (e−k,λ = e∗k,λ) (+iξ∗0)e+iωkt

=

√
2πh̄ωk
L3

(
−iξ0e

ik·x−iωkt ek,λ

)
+ complex conjugate

= 2

√
2πh̄ωk
L3

Re
(
−iξ0e

ik·x−iωkt ek,λ

)
,

(123)

and likewise 〈
B̂(x)

〉
(t) = 2

√
2πh̄ωk
L3

Re
(
λξ0e

ik·x−iωkt ek,λ

)
. (124)

Treating these expectation values of the quantum fields as classical fields, it is easy to check

that they describe the plane wave with wave vector k, circular polarization — right for

λ = +1 or left for λ = −1, — and amplitude

A = 2

√
2πh̄ωk
L3

× |ξ0|. (125)

Moreover, the classical energy of this wave

Ecl =

∫
d3x
〈E〉2 + 〈B〉2

8π
=

L3

8π
× A2 = h̄ωk × |ξ0|2 (126)

agrees with the expectation values of the coherent state’s energy (counting from the zero
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point) 〈
E′
〉

= h̄ωk × |ξ|2 = h̄ωk × |ξ0|2. (127)

As to the energy uncertainty of the coherent state,

∆E = h̄ωk × |ξ| = h̄ωk × |ξ0|, (128)

it becomes relatively small, ∆E � 〈E′〉, for waves with classical energies Ecl � h̄ωk, hence

|ξ0| � 1.

The above example explained a coherent state representing a single circularly polarized

plane wave, but it is easy to generalize it to any classical configuration of the EM fields in

the cavity as long as they obey the Maxwell equations and the cavity periodicity conditions.

A most general coherent state of the EM fields is a tensor product of coherent states of each

mode (k, λ), thus

|coherent〉 =
∣∣{ξk,λ}〉 =

⊕
k,λ

∣∣ξk,λ〉modek,λ
, (129)

or in terms of the raising and lowering operators

∣∣{ξk,λ}〉 = exp

−1

2

∑
k,λ

|ξk,λ|2
× exp

∑
k,λ

ξk,λâ
†
k,λ

 |vacuum〉 , (130)

∀(k, λ) : âk,λ
∣∣{ξk,λ}〉 = ξk,λ

∣∣{ξk,λ}〉 . (131)

Such coherent states obey the time-dependent Schrödinger equation

ih̄
d

dt

∣∣{ξk,λ(t)}
〉

= Ĥ ′
∣∣{ξk,λ(t)}

〉
(132)

provided each ξk,λ changes its phase with frequency ωk,

ξk,λ(t) = ξk,λ(0)× e−iωkt. (133)

Consequently, the expectation values of the EM fields in a coherent state behave like the
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classical EM fields,

〈
Ê(x)

〉
(t) =

∑
k,λ

√
8πh̄ωk
L3

Re
(
−iξk,λ(0) eik·x−iωkt ek,λ

)
,

〈
B̂(x)

〉
(t) =

∑
k,λ

√
8πh̄ωk
L3

Re
(
ξk,λ(0) eik·x−iωkt λek,λ

)
.

(134)

In particular, these classical fields obey the Maxwell equations (and the periodicity conditions

for the cavity), and their classical energy

Ecl =

∫
d3x
〈E〉2 + 〈B〉2

8π
=
∑
k,λ

h̄ωk × |ξk,λ|2 (135)

agrees with the energy expectation value in the coherent state,

〈E〉 =
∑
k,λ

h̄ωk × |ξk,λ|2. (136)

Finally, for any classical EM fields Ecl(x, t) and Bcl(x, t) in the cavity obeying free

Maxwell equations (and the periodicity conditions), there is a coherent state
∣∣{ξk,λ}〉 with

〈
Ê(x)

〉
(t) = Ecl(x, t) and

〈
B̂(x)

〉
(t) = Bcl(x, t), (137)

specifically the state with

ξk,λ(t) =
λBcl

k,λ(t) + iEBcl
k,λ(t)

√
8πh̄ωk

=
1√

8πh̄ωkL3

∫
d3x e−ik·x ek,λ ·

(
λBcl(x, t) + iEcl(x, t)

)
.

(138)

But to save time, let me skip verifying this statement and leave it an optional extra exercise

for the interested students.
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