
Cabibbo–Kobayashi–Maskawa Matrix of Flavor Mixing

History:

By 1950s, physicists have noted that the Fermi constant GF inferred from the β–decays

of nuclei is a couple of percent smaller than the GF inferred from the muon decay. At

the same time, a bunch of strange particles were discovered in cosmic rays and accelerator

labs; these particles were created by the strong interactions but decayed only by the weak

interactions, hence the name “strange”. Moreover, the effective Fermi constant responsible

for the strange particle decays was about 412 times weaker than the regular GF responsible

for the nuclear β–decays or the pion decays.

Eventually, people noted the similarity of strong interactions between the strange and

non-strange hadrons, and in 1961 Murray Gell–Mann and Yuval Ne’eman discovered an ap-

proximate SU(3) symmetry between them. Nowadays, this symmetry is called the SU(3)flavor

to distinguish from the exact SU(3)color symmetry of QCD. And in 1963, Nicola Cabibbo

used the SU(3)flavor symmetry to establish the universality of the weak interactions between

all kinds of particles, leptons or hadrons, strange or non-strange. Specifically, in the effective

low-energy theory

L = −2
√
2GF × J+

µ J
µ− (1)

the Fermi constant is the same for all the weak interactions, while

J+
µ = Ψ(e)γµ

1− γ5
2

Ψ(νe) + Ψ(µ)γµ
1− γ5

2
Ψ(νµ) + J+

µ (hadrons),

J−
µ = Ψ(νe)γµ

1− γ5
2

Ψ(e) + Ψ(νµ)γµ
1− γ5

2
Ψ(µ) + J−

µ (hadrons)

(2)

where the hadronic J±
µ are the SU(3) — or rather the chiral SU(3)L — symmetry currents

corresponding to the mixed generators

T± = cos θ
(
T 1 ∓ iT 2

)
+ sin θ

(
T 4 ∓ iT 5

)
. (3)

In this formula, the T 1 and the T 2 are isospin generators, the T 4 and the T 5 generators

mix strange and non-strange hadrons with each other, and θ ≈ 13◦ is a small mixing angle

nowadays called the Cabibbo angle θc to distinguish from the Weinberg’s mixing angle θw of
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the GWS electroweak theory. In terms of the quark model — invented by Murray Gell–Mann

and George Zweig in 1964 — the hadronic weak currents are

J±
µ (hadrons) =

quarks∑

i,j=u,d,s

Ψiγµ
1− γ5

2

(
λ±

2

)i

j

Ψj (4)

where

λ+

2
=




0 0 0

cos θc 0 0

sin θc 0 0


 ,

λ−

2
=




0 cos θc sin θc

0 0 0

0 0 0


 . (5)

In the SU(2)w × U(1)y terms, the Cabibbo models means that the quark eigenstates of

the electroweak quantum numbers are different from the mass eigenstates: Let u, d, and s

denote the quark flavors of definite mass, then the SU(2) doublet comprises Ψ(u) and

Ψ(d′) = cos θcΨ(d) + sin θcΨ(s) (6)

rather than Ψ(d), while the orthogonal combination

Ψ(s′) = − sin θcΨ(d) + cos θcΨ(s) (7)

is an SU(2) singlet. Or in chiral terms:

(u, d′)L is an SU(2)W doublet with Y = +1
6 ,

s′L is an SU(2)W singlet with Y = −1
3 ,

uR is an SU(2)W singlet with Y = +2
3 ,

d′R is an SU(2)W singlet with Y = −1
3 ,

s′R is an SU(2)W singlet with Y = −1
3 .

(8)

The Cabibbo theory explains the relative strengths of weak interactions involving the

leptons, the non-strange hadrons, and the strange hadrons. For examples, compare muon

decay µ− → νµ + e− + ν̄e, neutron β-decay n
0 → p+ + e− + ν̄e, pion decay π+ → µ+ + ν̄µ,

and kaon decay K+ → µ+ + ν̄µ:
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W
g

g
µ−

νµ

ν̄e

e−

M ∝ GF , (9)

W
g

g cos θc
d

u

d

neutron

d

u

u

proton

ν̄e

e−

M ∝ GF × cos θc , (10)

u

d̄

π+
W

g cos θc g

νµ

µ+

M ∝ GF × cos θc

u

s̄

K+

W

g sin θc g

νµ

µ+

M ∝ GF × sin θc
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Unfortunately for the Cabibbo model, it predicts unrealistically high decay rates of

neutral kaons to µ+µ− pairs. By late 1960s, the branching ratio for this decay mode was

known to be less then 2·10−7 (the current particle data book gives B(K0 → µ+µ−) ≈ 7·10−9),

but the Cabibbo model allows this decay at the one-loop level:

d

s̄

K0

W

W

g cos θc

g sin θc

g

g

u νµ

µ+

µ−

(11)

which yields amplitude

M(K0 → µ+µ−) ∝ α2

π
×GF × sin θc cos θc (12)

and hence branching ratio

B(K0 → µ+µ−) ∼ α2

π
∼ 10−2. (13)

Worse, in the SU(2) × U(1) Glashow model, mixing of the d′ and s′ quarks with different

SU(2) quantum numbers leads to the flavor changing terms in the neutral current

J
µ
Z = J

µ
Z(leptons) + Ψ(u)γµ

(
+
1− γ5

4
− 2

3
sin2 θw

)
Ψ(u)

+ Ψ(d′)γµ
(
−1 − γ

5

4
+

1

3
sin2 θw

)
Ψ(d′) + Ψ(s′)γµ

(
0 +

1

3
sin2 θw

)
Ψ(s′)

= J
µ
Z(leptons) + Ψ(u)γµ

(
+
1− γ5

4
− 2

3
sin2 θw

)
Ψ(u)

+ Ψ(d)γµ
(
− cos2 θc

1− γ5
4

+
1

3
sin2 θw

)
Ψ(d)

+ Ψ(s)γµ
(
− sin2 θc

1− γ5
4

+
1

3
sin2 θw

)
Ψ(s)

+ Ψ(s)γµ
(
− sin θc cos θc

1− γ5
4

)
Ψ(d) + Ψ(d)γµ

(
− sin θc cos θc

1− γ5
4

)
Ψ(s).

(14)

4



Consequently, there is a tree diagram for the K0 → µ+µ− decay:

d

s̄

K0
g̃ sin θc cos θc

Z

g̃

µ+

µ−

M ∝ GF × sin θc cos θc

(15)

and hence O(1) branching ratio.

To avoid both of these problems, Sheldon Glashow, John Iliopoulos, and Luciano Maiani

proposed in 1970 that the s′ quark (or rather the LH s′ quark) should be a member of an

SU(2)W doublet (c, s′)L rather than a singlet. Consequently, there should be a fourth quark

flavor c — which they called charm — whose mass they estimated as mc = 1–2 GeV; this

flavor — or rather any hadrons containing this quark flavor — were not known in 1970, but

was soon discovered in 1974 by Sam Ting’s group at BNAL and Burton Richter’s group at

SLAC. Altogether, Glashow, Iliopoulos, and Maiani — collectively called GIM — had two

similar families of quarks:

(u, d′)L and (c, s′) are SU(2)W doublets with Y = +1
6 ,

uR and cR are SU(2)W singlets with Y = +2
3 ,

d′R and s′R are SU(2)W singlets with Y = −1
3 ,

(16)

just like the two similar families of leptons known back then,

(νe, e
−)L and (νµ, µ

−) are SU(2)W doublets with Y = −1
2 ,

e−R and µ−R are SU(2)W singlets with Y = −1.
(17)

Consequently, despite the mass eigenstates d and s being mixtures of the d′ and s′ electroweak

eigenstates, the neutral current remains diagonal in both (d′, s′) and (d, s) bases,

J
µ
Z(d, s) =

∑

q′=d′,s′

Ψ(q′)γµ
(
−1− γ

5

4
+

1

3
sin2 θw

)
Ψ(q′)

=
∑

q=d,s

Ψ(q)γµ
(
−1 − γ

5

4
+

1

3
sin2 θw

)
Ψ(q)

(18)

so there are no flavor-changing neutral currents. This immediately eliminates the tree-level

K0 → µ+µ− decay.
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As to the one-loop diagram (11) for this decay, adding the c quark to the theory adds

another diagram with a c quark in the propagator instead of u. Altogether,

d

s̄

K0

W

W

+g cos θc

+g sin θc

g

g

u νµ

µ+

µ−

M = +cos θc sin θc × common,

d

s̄

K0

W

W

−g sin θc

+g cos θc

g

g

c νµ

µ+

µ−

M = − sin θc cos θc × common,

(19)

so the net decay amplitude cancels out. This cancellation is knows as the GIM mechanism

after its authors.

The GIM mechanism can be easily generalized to electroweak models with more than two

families of quarks and leptons, as long as each family has exactly the same SU(2)W ×U(1)Y
quantum numbers. Moreover, in 1973 Makoto Kobayashi and Toshihide Maskawa found that

the flavor mixing in the 3–flavor model can break the CP symmetry of the theory. The CP

violation was experimentally discovered in 1964 by James Cronin and Val Fitch, and there

were great may theories trying to explain it, but the Kobayashi–Maskawa theory had the

advantage of not introducing any new interactions, just a new family of particles subject

to the well-known strong and electroweak interactions. Lo and behold, this third family

was soon experimentally discovered: the τ lepton in 1975, the bottom b quark in 1977, the

top t quark in 1995, and finally the τ -type neutrino ντ in 2000. Also, up until 2001 the

CP violation was seen only in the neutral kaons, but then it was also seen in the neutral

B-mesons, and all the data was consistent with the Kobayashi–Maskawa theory. So in 2008,

Makoto Kobayashi and Toshihide Maskawa got Nobel prises for their theory, — or rather

shared 1
2 of the Nobel prise, the other 1

2 going to Yoichiro Nambu
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Present Day

At present (2022), the Standard Model appears to have 3 families of quarks and leptons

and no other fermions. So let’s work out the 3-family flavor mixing in some detail. Let the

un-primed quark flavors u, d, s, c, b, t be the eigenstates of the quark mass matrix. In terms

of these flavors, the 3 SU(2)W doublets comprise

(
u

d′

)

L

,

(
c

s′

)

L

,

(
t

b′

)

L

, (20)

for 

d′

s′

b′


 =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


×



d

s

b


 (21)

where

V =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (22)

is a 3 × 3 unitary matrix called the CKM matrix after Cabibbo, Kobayashi, and Maskawa.

The CKM matrix has 9 parameters — 3 real angles and 6 complex phases — but we may

eliminate 5 of the phases by adjusting the relative phases of the basic flavors,

Ψ(u) → eiθuΨ(u), Ψ(c) → eiθcΨ(c), Ψ(t) → eiθtΨ(t), (23)

and likewise

Ψ(d′) → eiθuΨ(d′), Ψ(s′) → eiθcΨ(s′), Ψ(b′) → eiθtΨ(b′), (24)

but

Ψ(d) → eiθdΨ(d), Ψ(s) → eiθsΨ(s), Ψ(b) → eiθbΨ(b), (25)

hence

Vf ′f → exp(iθf ′ − iθf )Vf ′f . (26)
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The standard parametrization of the remaining 4 parameters of the CKM matrix is

V =




1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23


×




cos θ13 0 e−iδ sin θ13

0 1 0

−e+iδ sin θ13 0 cos θ13


×




cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1


 . (27)

According to the 2022 particle data book, the best fit to all the current experimental data is

θ12 = 13.00◦ ± 0.04◦,

θ23 = 2.40◦ ± 0.05◦,

θ13 = 0.211◦ ± 0.006◦,

δ = 65.5◦ ± 1.5◦.

(28)

Since the CKM matrix mixes flavors with exactly the same T 3 and Y quantum numbers

— and hence exactly the same couplings

g̃ ×
(
T 3 −Q sin2 θw

)
(29)

to the Z0 vector particle, — changing the quark flavor basis to the mass eigenstates does

not result in any flavor-changing terms in the neutral weak current:

J
µ
Z(quarks) =

∑

q=u,c,t

Ψqγµ
(
+
1− γ5

4
− 2

3
sin2 θw

)
Ψq

+
∑

q′=d′,s′,b′

Ψq′γµ
(
−1− γ

5

4
+

1

3
sin2 θw

)
Ψq′

=
∑

q=u,c,t

Ψqγµ
(
+
1− γ5

4
− 2

3
sin2 θw

)
Ψq

+
∑

q=d,s,b

Ψqγµ
(
−1− γ

5

4
+

1

3
sin2 θw

)
Ψq,

(30)

exactly as in eq. (48) of my previous set of notes.
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On the other hand, the charged weak currents of the quarks do get all kinds of off-diagonal

terms in the basis of mass eigenstates. Indeed, in the electroweak basis

J−
µ (quarks) =

∑

U=u,c,t

Ψ(U)γµ
1− γ5

2
Ψ(the SU(2) partner of U) (31)

where

Ψ(the SU(2) partner of U) =
∑

D=d,s,b

VUD ×Ψ(D), (32)

thus

J−
µ (quarks) =

∑

U=u,c,t

∑

D=d,s,b

VUD ×Ψ(U)γµ
1− γ2

2
Ψ(D). (33)

Likewise,

J+
µ (quarks) =

∑

U=u,c,t

Ψ(the SU(2) partner of U)γµγµ
1− γ2

2
Ψ(U) (34)

where

Ψ(the SU(2) partner of U) =
∑

D=d,s,b

V ∗
UD ×Ψ(D), (35)

thus

J+
µ (quarks) =

∑

U=u,c,t

∑

D=d,s,b

V ∗
UD ×Ψ(D)γµ

1− γ2
2

Ψ(U). (36)

The off-diagonal terms in the CKM matrix are very important, as they allow the strange

and the b-flavored hadrons to decay into lighter particles. Indeed, a weak decay of a b-

flavored particle involves an electroweak transition from the b quark to a charge +2
3 quark

u, c, or t and a virtual W− (which then splits into a pair of light quarks or leptons). But

the top quark is heavier than the bottom quark, so the only allowed decays are b → c and

b→ u, which involve the off-diagonal CKM matrix elements Vub and Vcb, thus

Γ(b→ anything) ∝ |Vub|2 + |Vcb|2. (37)

Without these off-diagonal matrix elements, the lightest b-flavored mesons and baryons

would be stable.
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Likewise, the only allowed weak decay channel of the s quark is to a virtual W− and a

u quark, because the other two charge +2
3 flavors are heavier than s. Consequently,

Γ(s→ anything) ∝ |Vus|2, (38)

and without this off-diagonal matrix element, the strange quark — and hence some strange

mesons and baryons — would be stable.

I wish I could explore the phenomenological consequences of the CKM matrix in some

detail in this class, but alas the time is too short and the semester is almost finished. Instead,

let me simply recommend you take the Particle Phenomenology class Professor Can Kilic is

going to teach in Fall 2023.

Yukawa Couplings and the Origin of the CKM Matrix.

In the un-broken SU(2)×U(1) theory the quarks are massless and we cannot tell which

quark is u, which is c, etc., etc.; we cannot even tell which left-handed Weyl field pairs up

with which right-handed Weyl field into a Dirac spinor. We can use the SU(2) symmetry to

form doublets, but we are free to choose any basis we like for the 3 doublets — let’s call them

Qα for α = 1, 2, 3 — and we are free to change this basis by a unitary field re-definition,

ψi
L(Qα) → ψi

L(Q
′
α) =

∑

β

(
UQ)α,β × ψi

L(Qβ), (39)

where UQ is a unitary 3 × 3 matrix. Similarly, we may use any basis Dα for the 3 right-

handed quarks of charge −1
3 , any basis Uα for the 3 right-handed quarks of charge +2

3 , and

we are free to change these two bases by unitary transforms

ψR(Uα) → ψR(U
′
α) =

∑

β

(
UU )α,β × ψR(Uβ),

ψR(Dα) → ψR(D
′
α) =

∑

β

(
UD)α,β × ψR(Dβ),

(40)

where UU and UD are two independent unitary 3× 3 matrices. However, we cannot mix the

Uα with the Dα because of their different U(1) hypercharges.
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Likewise, we are free to use any basis Lα for the 3 doublets of left-handed leptons, any

basis Eα for the 3 right-handed charged leptons, and we are free to change these bases by

unitary transforms,

ψi
L(Lα) → ψi

L(L
′
α) =

∑

β

(
UL)α,β × ψi

L(Lβ),

ψR(Eα) → ψR(E
′
α) =

∑

β

(
UE)α,β × ψR(Eβ).

(41)

(I’ll take care of the neutrinos in my notes on neutrino masses.)

The Yukawa couplings involve one Higgs field H i or H∗
i and two fermion fields, — one

left-handed, one right-handed — and for each choice of their SU(2)×U(1) quantum numbers,

there are three ψL fields and three ψR fields. Consequently, there is a big lot of the Yukawa

terms in the Lagrangian, namely

LYukawa = −
∑

α,β

Y U
αβ × ψ

†
R(Uα)ψ

i
L(Qβ)× ǫijHj −

∑

α,β

Y D
αβ × ψ

†
R(Dα)ψ

i
L(Qβ)×H∗

i

−
∑

α,β

Y E
αβ × ψ

†
R(Eα)ψ

i
L(Lβ)×H∗

i + Hermitian conjugates,
(42)

where the Y U
α,β , the Y

D
α,β, and the Y E

α,β comprise three 3× 3 complex matrices of the Yukawa

coupling constants. And when the Higgs develops symmetry-breaking VEV, these matrices

of Yukawa couplings give rise to the complex 3× 3 mass matrices

MU
α,β =

v√
2
× Y U

α,β , MU
α,β =

v√
2
× Y D

α,β , ME
α,β =

v√
2
× Y E

α,β , (43)

Lmass = −
∑

α,β

MU
αβ × ψ

†
R(Uα)ψ

1
L(Qβ) −

∑

α,β

MD
αβ × ψ

†
R(Dα)ψ

2
L(Qβ) (44)

−
∑

α,β

ME
αβ × ψ

†
R(Eα)ψ

2
L(Lβ) + Hermitian conjugates. (45)

To get the physical masses of quarks and leptons, we need to diagonalize these mass

matrices via suitable unitary transforms (39)–(41). In matrix notations, these transforms

11

class/neutrinos.pdf


lead to

(
Y U
)′

= UU ×Y U ×
(
UQ
)†
,
(
Y D
)′

= UD×Y D×
(
UQ
)†
,
(
Y E
)′

= UE×Y E×
(
UL
)†
,

(46)

and consequently

(
MU

)′
= UU×MU×

(
UQ
)†
,
(
MD

)′
= UD×MD×

(
UQ
)†
,
(
ME

)′
= UE×ME×

(
UL
)†
.

(47)

Now, any complex matrix M can be written as a product M = W1DW2 where W1 and

W2 are unitary matrices while D is diagonal, real, and non-negative.
⋆
Consequently, using

appropriate unitary matrices UE and UQ we can make the charged leptons’ mass matrix

diagonal and real

ME →
(
ME

)′
= UE ×ME ×

(
UL
)†

=



me 0 0

0 mµ 0

0 0 mτ


 . (48)

Note that it is in the transformed bases — where the (ME)′ matrix is diagonal — that the

LH and the RH Weyl fields combine into Dirac fields of the physical electron, muon, and tau

fields

Ψe =

(
ψ2
L(L

′
1) = UL

1βψ
2
L(Lβ)

ψR(E
′
1) = UE

1βψR(Eβ)

)
,

Ψµ =

(
ψ2
L(L

′
2) = UL

2βψ
2
L(Lβ)

ψR(E
′
2) = UE

2βψR(Eβ)

)
,

Ψτ =

(
ψ2
L(L

′
3) = UL

3βψ
2
L(Lβ)

ψR(E
′
3) = UE

3βψR(Eβ)

)
.

(49)

Likewise, using the UU and the UQ unitary matrices we may diagonalize the mass matrix

⋆ To prove, start with a polar decomposition M = UH where U is unitary and H =
√
M †M is hermitian

and positive semi-definite. Then diagonalize the hermitian matrix H , i.e., write it as H = W
†
DW for

some unitary matrix W . Consequently, M = UW †DW = W1DW2 for W2 = W and W1 = UW †.
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for the charge +2
3 quarks,

MU →
(
MU

)′
= UU ×MU ×

(
UQ
)†

=



mu 0 0

0 mc 0

0 0 mt


 ,

Ψu =

(
ψ1
L(Q

′
1) = UQ

1βψ
1
L(Qβ)

ψR(U
′
1) = UU

1βψR(Uβ)

)
,

Ψc =

(
ψ1
L(Q

′
2) = UQ

2βψ
1
L(Qβ)

ψR(U
′
2) = UU

2βψR(Uβ)

)
,

Ψt =

(
ψ1
L(Q

′
3) = UQ

3βψ
1
L(Qβ)

ψR(U
′
3) = UU

3βψR(Uβ)

)
,

(50)

and similarly for the charge −1
3 quarks,

MD →
(
MD

)′
= UD ×MD ×

(
ŨQ
)†

=



md 0 0

0 ms 0

0 0 mb


 ,

Ψd =

(
ψ2
L(Q

′
1) = ŨQ

1βψ
2
L(Qβ)

ψR(U
′
1) = UD

1βψR(Dβ)

)
,

Ψs =

(
ψ2
L(Q

′
2) = ŨQ

2βψ
1
L(Qβ)

ψR(U
′
2) = UD

2βψR(Dβ)

)
,

Ψb =

(
ψ2
L(Q

′
3) = ŨQ

3βψ
1
L(Qβ)

ψR(U
′
3) = UD

3βψR(Dβ)

)
,

(51)

However, it takes different unitary matrices UQ 6= ŨQ to diagonalize the up-type and down-

type quark mass matrices, and that’s what messes up the SU(2) doublet structure! Indeed,

in terms of the upper components ψ1
L(Qα) of the original doublets, the left-handed u, c, t

quarks of definite mass are linear combinations



uL

cL

tL


 = UQ ×



ψ1
L(Q1)

ψ1
L(Q2)

ψ1
L(Q3)


 , (52)

so their SU(2) partners are similar linear combinations of the lower components ψ2
L(Qα) of
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the original doublets,


d′L

s′L

b′L


 = UQ ×



ψ2
L(Q1)

ψ2
L(Q2)

ψ2
L(Q3)


 , (53)

for the same UQ matrix as the up-type quarks. On the other hand, the d, s, b quarks defined

as mass eigenstates obtain from different linear combinations



dL

sL

bL


 = ŨQ ×



ψ2
L(Q1)

ψ2
L(Q2)

ψ2
L(Q3)


 . (54)

Comparing the sets of down-type quark fields, we immediately see that



d′L

s′L

b′L


 = UQ × ŨQ† ×



dL

sL

bL


 , (55)

which gives us the Cabibbo–Kobayashi–Maskawa matrix

VCKM = UQ × ŨQ†
. (56)

CP Violation

Missing Sections

Since the CP violation was first discovered by Cronin and Fitch in the neutral K-meson

sector, I need to tell you a few things about these mesons. the K0 ↔ K
0
mixing and kaon

oscillations, the K-long and K-short and their decays, and what the CP symmetry — and

its violation — has to do with all of that. Unfortunately, I do not have time to write all

that, so I am going to teach this subject using the document camera and the class notes of

Professor Mark Thomson from the Cambridge University (pages 408–428).
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CKM Matrix and the CP Violation

All the experimentally measured CP-violating effects — not only in the neutral kaons

but also in the b-flavored and c-flavored heavy mesons — can be explained by the imaginary

part Im(VU,D) of the CKM matrix. In general, the relation between the CP violation and

the CKM matrix is quite complicated and involves loop diagrams: At the tree level, there is

no CP violation. For example, the CP violation in the neutral kaons stem from the one-loop

GIM diagrams, which I shall explain later in this section. But before I get there, let me show

you how the imaginary part of the CKM matrix violates the CP symmetry of the electroweak

Lagrangian.

First of all, remember that quarks and leptons form chiral multiplets of the the elec-

troweak SU(2)W × U(1)Y gauge theory, so the weak interactions have no semblance of the

parity symmetry P or the charge conjugation symmetry C. In particular, the charged cur-

rents involve only the left-chirality Weyl spinors, which in particle terms mean left-helicity

quarks and leptons but right-helicity anti-quarks or anti-leptons. However, the chirality is

perfectly consistent with the combined CP symmetry, which does not mix the ψL and the

ψR fields; instead it acts as

CP : ψL(x, t) → ±σ2ψ∗
L(−x, t), ψR(x, t) → ±σ2ψ∗

R(−x, t). (57)

Since the neutral weak current does not care about the CKM matrix, let me focus on

the charged currents. Under CP, the charged vector fields W±
µ (x) transform as

CP : W±
0 (x, t) → −W∓

0 (−x,+t), W
±(x, t) → +Wi∓(−x,+t), (58)

where the exchange W+ ↔ W− is due to charge conjugation while different signs for the

3-scalar and the 3-vector components are due to reflection x→ −x of the space coordinates.

Consequently, in a CP symmetric theory we would need a similar relation for the charged

currents,

CP : J±
0 (x, t) → −J∓

0 (−x,+t), J
±(x, t) → +J

∓(−x,+t), (59)

In terms of fermions, the charged weak currents are sums of left-handed current terms of
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general form

j
µ
L = ψ

1†
L σ̄

µψ2
L = Ψ1γµ

1− γ5
2

Ψ2 (60)

— where Ψ1 and Ψ2 run over appropriate fermion species, — so let’s work out how such

terms transform under CP. Assuming the Weyl fermions ψ1
L and ψ2

L have same intrinsic CP

signs as members of the same SU(2) doublet, we have

CP : ψ1†
L σ̄

µψ2
L → + (ψ1

L)
⊤σ2 × σ̄µ × σ2(ψ2

L)
∗

= +(ψ1
L)

⊤ ×
(
σ2σ̄

µσ2 = (σµ)⊤
)
× (ψ2

L)
∗

= −ψ2†

L σ
µψ1

L

= ψ
2†
L σ̄

µψ1
L ×

{
+1 for µ = 1, 2, 3,

−1 for µ = 0.

(61)

The µ dependence of the overall sign here — which comes from comparing −σµ to +σ̄µ —

is in perfect agreement with eq. (59). In Dirac notations, eq (61) amounts to

CP : Ψ1γµ
1− γ5

2
Ψ2 → Ψ2γµ

1− γ5
2

Ψ1 ×
{
+1 for µ = 1, 2, 3,

−1 for µ = 0.
(62)

Besides the µ–dependent sign, theCP exchanges the two fermionic species Ψ1 ↔ Ψ2 involved

in the current jµL. For the leptonic charged weak currents

J+
µ (leptons) = Ψeγµ

1− γ5
2

Ψνe + Ψµγµ
1− γ5

2
Ψνµ + Ψτγµ

1− γ5
2

Ψντ ,

J−
µ (leptons) = Ψνeγµ

1− γ5
2

Ψe + Ψνµγµ
1− γ5

2
Ψµ + Ψντγµ

1− γ5
2

Ψτ ,

(63)

the CP action (62) leads to J+
µ ↔ J−

µ , exactly as in eq. (59); indeed,

J−
µ ⊃ Ψeγµ

1− γ5
2

Ψνe ←→ Ψνeγµ
1− γ5

2
Ψe ⊂ J−

µ (64)

and likewise for the muonic and tauonic terms in the charged currents (63). Consequently,

the interactions

L ⊃ = − g2√
2
×
(
W+

µ J
µ−
leptonic + W−

µ J
µ+
leptonic

)
(65)

of the leptons with the vector fields W±
µ are invariant under CP.
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But the CP transformation rules of the quarks’ charged currents

J−µ(quarks) =
∑

U=u,c,t

∑

D=d,s,b

VU,D ×ΨUγµ
1− γ5

2
ΨD, (33)

J+µ(quarks) =
∑

U=u,c,t

∑

D=d,s,b

V ∗
U,D ×ΨDγµ

1− γ5
2

ΨU , (36)

are more complicated due to CKM matrix elements VU,D. Specifically,

CP : J−µ(quarks) → ±(µ)×
∑

U=u,c,t

∑

D=d,s,b

VU,D ×ΨDγµ
1− γ5

2
ΨU ,

which is almost like ± (µ)× J+µ(quarks), except for VU,D instead of V ∗
U,D;

CP : J+µ(quarks) → ±(µ)×
∑

U=u,c,t

∑

D=d,s,b

V ∗
U,D ×ΨUγµ

1− γ5
2

ΨD,

which is almost like ± (µ)× J−µ(quarks), except for V ∗
U,D instead of VU,D;

(66)

so the net effect of CP on the interactions

L ⊃ = − g2√
2
×
(
W+

µ J
µ−
quark + W−

µ J
µ+
quark

)
(67)

of the W±
µ with the quarks is equivalent to complex conjugating the CKM matrix,

CP : VU,D ↔ V ∗
U,D . (68)

Thus, the weak interactions of quarks (and hence hadrons) are CP symmetric if and only if

the CKM matrix is real.

Caveat: The specific action of the CP symmetry can be modified by changing the phase

conventions of the particle and antiparticle states and the corresponding fields. For example,

if we change the phase of a Dirac spinor field

Ψ(x) → Ψ′(x) = eiθΨ(x), (69)
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then the CP action on that field

CP : Ψ(x, t) → γ0γ2Ψ∗(−x, t) (70)

becomes

CP : Ψ′(x, t) → γ0γ2Ψ′∗(−x, t), (71)

which in terms of the original Ψ(x) field becomes

CP : Ψ(x, t) → e−2iθγ0γ2Ψ∗(−x, t), (72)

with an extra phase factor e−2iθ.

In the context of quarks in the GWS theory, redefinitions of the quark fields must keep

the quark mass matricesMU andMD real and diagonal. Thus, we must preserve the pairings

of the LH and RH Weyl spinors into Dirac spinors, but we may multiply each such Dirac

spinor by a separate phase factor:

Ψu → eiθuΨu, Ψc → eiθcΨc, Ψt → eiθtΨt; Ψd → eiθdΨd, Ψs → eiθsΨs, Ψb → eiθbΨb.

(73)

Consequently, the matrix elements of the Cabibbo–Kobayashi–Maskawa matrix also change

their phases according to

VU,D → exp(iθU − iθD)× VU,D . (74)

At the same time, the CP symmetry is also redefined to accommodate the new phases of

the quark fields. In fact, this redefinition completely parallels the redefined CKM matrix so

that in the new basis it is equivalent to complex conjugation of the new CKM matrix,

CP : VU,D ↔ V ∗
U,D . (75)

Therefore, the weak interactions are invariant under some kind of a CP symmetry if and

only if the CKM matrix can be made real by a re-phasing (73) of the quark flavors.
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For two quark doublets (u, d) and (c, s) — but no (t, b) — this is automatically true. In-

deed, for two doublets the CKM matrix is a 2×2 unitary matrix, which may be parametrized

by 1 real angle (the Cabibbo angle) and 3 complex phases, for example

V =

(
ei(a+b+c) cos θc ei(a+b) sin θc

−ei(a+c) sin θc ei(a) cos θc

)
. (76)

At the same time, there are 4 quark flavors whose phases we can change, but since only the

differences between the quark phases affect the CKM matrix, we may adjust 4− 1 = 3 of its

complex phases. In particular, we may set a = b = c = 0 in eq. (76) and get a real matrix

V =

(
cos θc sin θc

− sin θc cos θc

)
. (77)

Thus, for just 2 quark doublets (u, d) and (c, s), the weak interactions preserve CP!

But when Kobayashi and Maskawa did similar phase counting for theories with n > 2

quark doublets — which back in 1973 was a sheer speculation, — they got a very different

result: The unitary n×n CKM matrix is parametrized by 1
2n(n−1) real angles and 1

2n(n+1)

complex phases; by changing the 2n quark phases we may eliminate 2n − 1 of these phase

parameters, which leaves us with

1
2n(n + 1) − (2n− 1) = 1

2(n− 1)(n− 2) > 0 (78)

CP-violating phase parameters we cannot eliminate. In particular, for n = 3 there is one

CP-violating phase we cannot eliminate, and it is this phase which is responsible for all the

CP violations in weak interactions.

In the standard convention for the CKM matrix

V =




1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23


×




cos θ13 0 e−iδ sin θ13

0 1 0

−e+iδ sin θ13 0 cos θ13


×




cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1


 , (27)

the 3 real angles are θ12 ≈ θCabibbo, θ23, and θ13, while δ is the CP-violating phase. Ex-

perimentally, this phase has a surprisingly large value δ ≈ 65◦, but the CP violation is
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rather weak due to smallness of the real mixing angles θ12 ≈ 13◦, θ23 ≈ 2.4◦, and especially

θ13 ≈ 0.21◦. Indeed, in the absence of any one of these real mixing angles, the CKM matrix

would be real or equivalent to real via re-phasing of the quark flavors: For θ13 = 0 the

matrix (27) would be real as it is, while for θ23 = 0 we would have

real V ′ =



e+iδ/2 0 0

0 e−iδ/2 0

0 0 e−iδ/2


× V ×



e−iδ/2 0 0

0 e+iδ/2 0

0 0 e+iδ/2


 . (79)

and likewise for θ12 = we would have

real V ′ =



e+iδ/2 0 0

0 e+iδ/2 0

0 0 e−iδ/2


× V ×



e−iδ2/ 0 0

0 e−iδ/2 0

0 0 e+iδ/2


 , (80)

So instead of the δ phase per se, the physical CP-breaking effects of the CKM matrix depend

on the flavor-phase independent Jarlskog invariant J defined as

for U, U ′ = u, c, t but U 6= U ′, and D,D′ = d, s, b but D 6= D′ :

Im
(
VU,DVU ′,D′V ∗

U,D′V ∗
U ′,D

)
= ±J. (81)

In the standard convention

J = cos θ12 sin θ12 × cos θ23 sin θ23 × cos2 θ13 sin θ13 × sin(δ13), (82)

and its experimental value is J = (3.08 ± 0.15) × 10−5. It’s the smallness of this invariant

which makes the CP violating effects much weaker than the rest of the weak interaction!

For example, consider the imaginary part of the
〈
K

0
∣∣∣M̂

∣∣K0
〉
amplitude, which is re-

sponsible for most of CP violation in the kaon system. The leading contribution to this

amplitude comes from the GIM (Glashow–Iliopoulos–Maiani) box diagrams

d

s̄

K0

s

d̄

K
0u, c, d u, c, d

W

W

(83)
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and

d

s̄

K0

s

d̄

K
0W W

u, c, d

u, c, d

(84)

In both diagrams, each of the 4 vertices includes a CKM matrix element for the appropriate

flavors. Specifically, let U and U ′ denote the flavors of two charge = +2
3 quark propagators

in each diagram, then

M = C
∑

U,U ′=u,c,t

VU,dV
∗
U,s × VU ′,dV

∗
U ′,s × F

(
m(U), m(U ′)

)
(85)

where

C = O

(
α2
2f

2
KM

2
K

M2
W

)
= O(α2GF f

2
KM

2
K) (86)

is the common factor for all quark flavors in the loop, and

F
(
m(U), m(U ′)

)
=

∞∫

0

M2
W x2 dx

(x+M2
W )2(x+m2(U))(x+m2(U ′))

(87)

is the quark-mass-dependent factor for each combination of the U and U ′ flavors.

By unitarity of the CKM matrix U,

∑

U=u,c,t

VU,dV
∗
U,s = 0, (88)

so without the mass-dependent factors F the net K0 ↔ K
0
amplitude (85) would vanish.

To emphasise the importance of the quark mass differences, we may rewrite this amplitude
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as

M = C
∑

U,U ′=u,c,t

VU,dV
∗
U,s × VU ′,dV

∗
U ′,s × S

(
m(U), m(U ′)

)
(89)

where

S
(
m(U), m(U ′)

)
= F

(
m(U), m(U ′)

)
− F

(
m(U), m(u)

)

− F
(
m(u), m(U ′)

)
+ F

(
m(u), m(u)

)

≈ F
(
m(U), m(U ′)

)
− F

(
m(U), 0

)
− F

(
0, m(U ′)

)
+ F

(
0, 0
)
,

(90)

the bottom line here stemming from the negligibly small up-quark’s mass. In light of

eqs. (90),

S
(
m(U), m(U ′)

)
= 0 for U = u or U ′ = u or both, (91)

and therefore

M = C
((
VcdV

∗
cs

)2×S(mc, mc) + 2
(
VcdV

∗
cs

)(
VtdV

∗
ts

)
×S(mc, mt) +

(
VtdV

∗
ts

)2×S(mt, mt)
)
.

(92)

Note: It is this amplitude — or rather its magnitude — which is responsible for the neutral

Kaon oscillations,

2MK × δM(KL, KS) = |M|, (93)

while its imaginary part

ImM = C


S(mc, mc)× Im

[(
VcdV

∗
cs

)2]
+ 2S(Mc, mt)× Im

[(
VcdV

∗
cs

)(
VtdV

∗
ts

)]

+ S(mt, mt)× Im
[(
VtdV

∗
ts

)2]


 (94)

is responsible for the CP violation in the neutral kaon decays.

By unitarity of the CKM matrix,

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (95)

and since the first term on the LHS happens to be real (in the standard convention for the
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CKM matrix), we may parametrize the other two terms as

VcdV
∗
cs = a + ic, VtdV

∗
ts = b − ic (96)

for some real a, b, c. Consequently,

Im
[(
VcdV

∗
cs

)2]
= 2ac,

Im
[(
VcdV

∗
cs

)(
VtdV

∗
ts

)]
= (a− b)c,

Im
[(
VtdV

∗
ts

)2]
= −2bc,

J = Im
[(
VcdV

∗
cs

)(
VtdV

∗
ts

)∗]
= (a+ b)c,

(97)

and therefore

ImM = J × 2C

(
a

a + b
S(mc, mc) +

a− b
a + b

× S(mc, mt) −
b

a+ b
× S(mt, tt)

)
. (98)

Likewise, the CP violation in the b-flavored or c-flavored neutral mesons is also pro-

portional to the Jarlskog invariant J . Since this invariant happens to be rather small,

J ≈ 3 · 10−5, the CP violating effects are rather weak relative to the other one-loop-level

weak interactions. And that why CP is a good approximate symmetry of the Standard

Model.

Strong CP Violation

In principle, the SU(3)C × SU(2)W × U(1)Y Standard Model can have two separate

sources of CP violation: (1) The imaginary part of the CKM matrix, which breaks the CP

symmetry of the weak interactions; (2) The instanton angle Θ of QCD, which can break the

CP symmetry of the strong interactions. In the terms of the QCD Lagrangian, the instanton

angle appears as a CP-odd term

LQCD ⊃
iΘ

32π2
tr
(
ǫκλµνFκλFµν

)
=

iαQCDΘ

16π
ǫκλµνF a

κλF
a
µν . (99)

The instanton angle is beyond the scope of this class, but I am going to explain it in an

extra lecture sometimes in April. Meanwhile, you can read the 2018 TASI Lectures on the

Strong CP Problem and Axions by Prof. Anson Hook at the University of Maryland.
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For the moment, let me say that a non-zero instanton angle has no perturbative effects

at any loop order, but it has strong non-perturbative effects on the QCD bound states such

as nucleons. In particular, the neutron gets an electric dipole moment

dn = eΘ×
{
O(αQCD × neutron’s radius),

best estimate 4.5 · 10−15 cm.
(100)

But despite diligent experimental attempts to detect and measure this dipole moment, it

turns out to be way too small; the current upper limit is |dn| < e× 1.8 · 10−26 cm. In terms

of the instanton angle, this limit gives |Θ| < 4 · 10−12, so for all practical purposes Θ = 0

and QCD happens to have perfect CP symmetry.

There are many theories as to why Θ happens to vanish, most likely being some kind of

a Peccei–Quinn symmetry, see Roberto Peccei’s lecture notes for the explanation. But this

subject gets way beyond the scope of this class, so let me stop here.
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