
DIMENSIONAL REGULARIZATION

The dimensional regularization of ultraviolet divergences involves analytic continuation

of the Euclidean momentum integrals to momentum spaces of non-integer dimensions D < 4

— which makes the integrals finite — and then taking the limit D → 4 (from below). Thus,

∫

reg

d4kE
(2π)4

f(kE) =

∫

µ4−D dDkE
(2π)D

f(kE), (1)

where µ is the reference energy scale at which the spherical momentum-space shell dkrade has

the same volume in D dimensions as in 4 dimensions. At much larger loop momenta, the

dkrade shell’s volume becomes smaller in D < 4 dimensions than in 4 dimensions:

d4kE ∼ (krade )3 dkrade −→ µ4−D × (krade )D−1 dkrade =

(

µ

krade

)4−D

× (krade )3 dkrade

≪ (krade )3 dkrade ,

(2)

and that’s what regularized the UV divergence of the integral (1).

Let’s take a closer look at the UV-regulating factor (marked in red in eq. (2)). For

D = 4− 2ǫ,
(

µ

krade

)4−D=2ǫ

=

(

k2e
µ2

)−ǫ

= exp

(

−ǫ× log
k2e
µ2

)

, (3)

which becomes small when

log
k2e
µ2

∼ 1

ǫ
=⇒ k2e ∼ µ2 × exp(1/ǫ). (4)

Thus, the effective UV cutoff scale2 in dimensional regularization is

Λ2
DR = µ2 × exp(1/ǫ) ≫ µ2. (5)

In practice, one usually sets the reference energy scale µ in the ball park of the energy scale

of the amplitude in question, for example µ ∼ |qnet|; consequently, for ǫ → +0 we have

ΛDR ≫ µ and hence ΛDR ≫ energy scale of the amplitude.
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Now consider a generic logarithmically divergent momentum integral; for most regular-

ization schemes, this means

regulated integral = (constant C)× log
Λ2

m2
+ finite. (6)

For the dimensional regularization, the effective UV cutoff scale is as in eq. (5), so we expect

regulated integral = (same constant C)×
(

1

ǫ
+ log

µ2

m2

)

+ finite. (7)

Thus, we may identify the coefficient C of the (1/ǫ) pole obtaining from dimensional regu-

larization with the coefficient of log Λ2 in the other regularization schemes.

Integrals over Momentum Spaces of Non-Integer Dimensions

Before we can use dimensional regularization, we need to learn how to perform inte-

grals over (Euclidean) momentum spaces of non-integer dimensions D. Let’s start with the

Gaussian integrals
∫

dDkE
(2π)D

exp(−tk2E). (8)

For any integer dimension D, k2E = k21 + k22 + · · ·+ k2D, hence

exp(−tk2E) =

D
∏

i=1

exp(−tk2i ) (9)

and therefore

∫

dDkE
(2π)D

exp(−tk2E) =

D
∏

i=1

+∞
∫

−∞

dki
2π

exp(−tk2i )

=





+∞
∫

−∞

dk

2π
exp(−tk2)





D

=

[

1

2π
×

√

π

t
=

1√
4πt

]D

= (4πt)−D/2.

(10)
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Let’s analytically continue this formula to the non-integer D. In other words, we let

∫

dDkE
(2π)D

exp(−tk2E) = (4πt)−D/2 (11)

for any D, integer or non-integer, real or complex. For non-integer D this formula maybe

thought as a definition of the Gaussian integral over a non-integer-dimensional space.

As to the non-Gaussian momentum integrals, we should re-express them in terms of

Gaussian integrals and then use eq. (11) for non-integer D. For example, consider the

dimensionally regulated momentum integral

I =

∫

reg

d4kE
(2π)4

1

[k2E +∆]2
=

∫

µ4−D dDkE
(2π)D

1

[k2E +∆]2
(12)

which appears in the context of the one-loop Feynman diagram

F(t) =
λ2

2

1
∫

0

dx

∫

reg

d4kE
(2π)4

1

[k2E +∆(x)]2
(13)

for ∆(x) = m2 − tx(1 − x). Using the Γ-function integral

∞
∫

0

dt tn−1 × exp(−t(k2E +∆)) =
Γ(n)

[k2E +∆]n
(14)

for n = 2, we let

1

[k2E +∆]2
=

1

Γ(2) = 1! = 1
×

∞
∫

0

dt t× exp(−t(k2E +∆)) (15)
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and consequently

∫

dDkE
(2π)D

1

[k2E +∆]2
=

∫

dDkE
(2π)D

∞
∫

0

dt t× exp(−t(k2E +∆))

〈〈 changing the order of integration 〉〉

=

∞
∫

0

dt te−t∆ ×
∫

dDkE
(2π)D

e−tk2

E

〈〈 using eq. (11) 〉〉

=

∞
∫

0

dt te−t∆ × (4πt)−D/2 = (4π)−D/2

∞
∫

0

dt t1−(D/2) × e−t∆

= (4π)−D/2 × Γ(2− (D/2))∆(D/2)−2.

(16)

Note that on the penultimate line here, the integrand behaves as t1−(D/2) for t → 0. Con-

sequently, the integral converges whenever (this power of t) > −1, which means D < 4. Or

for complex D, whenever Re(D) < 4. Physically, the t → 0 limit corresponds to k2E → ∞,

so the convergence/divergence of the
∫

dt integral at t → 0 corresponds to the UV conver-

gence/divergence of the original momentum integral.

Anyhow, for D = 4− 2ǫ eq. (16) becomes

µ4−D ×
∫

dDkE
(2π)D

1

[k2E +∆]2
=

(4πµ2)ǫ

16π2
× Γ(ǫ)×∆−ǫ (17)

and hence

F(t) =
λ2

32π2

1
∫

0

dxΓ(ǫ)

(

4πµ2

∆(x)

)ǫ

. (18)

Note that this is a finite formula for ǫ > 0 (i.e., for D < 4), but it becomes singular in the

ǫ → 0 limit because the Γ(ǫ) function has a pole at ǫ = 0.

Let’s take a closer look at this pole using Γ(x+1) = x×Γ(x). In particular, for x = ǫ → 0,

Γ(ǫ) =
Γ(ǫ+ 1)

ǫ
=

1

ǫ

(

Γ(1) + ǫ× Γ′(1) +
ǫ2

2
Γ′′(1) + · · ·

)

=
1

ǫ
− γE +

π2 + 6γ2E
12

× ǫ + O(ǫ2)

(19)
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where γE ≈ 0.5772 is the Euler–Mascheroni constant. At the same time,

(

4πµ2

∆(x)

)ǫ

= exp

(

ǫ× log
4πµ2

∆(x)

)

= 1 + ǫ× log
4πµ2

∆(x)
+

ǫ2

2
× log2

4πµ2

∆(x)
+ O(ǫ)3, (20)

hence

Γ(ǫ)×
(

4πµ2

∆(x)

)ǫ

=
1

ǫ
− γE + log

4πµ2

∆(x)
+ O(ǫ). (21)

In dimensional regularization, positive powers of ǫ → 0 correspond to negative powers of

log Λ2
UV → ∞. And although such negative powers of log Λ2

UV go to zero much slower than

the negative powers of the Λ2
UV itself, they do eventually go to zero in the very-large-UV-

cutoff-scale limit. Consequently, in dimensional regularization we neglect all positive powers

of ǫ in various amplitudes (but only in the net product of all the factors). Thus, in eq. (18)

we approximate

Γ(ǫ)×
(

4πµ2

∆(x)

)ǫ

−−→
ǫ→0

1

ǫ
− γE + log

4πµ2

∆(x)
(22)

and hence

FDR(t) =
λ2

32π2

1
∫

0

dx

(

1

ǫ
− γE + log

4πµ2

∆(x)

)

. (23)

Finally, using

log
4πµ2

∆(x)
= log

4πµ2

m2
− log

∆(x) = m2 − tx(1 − x)

m2
(24)

we arrive at

FDR(t) =
λ2

32π2





1

ǫ
− γE + log

4πµ2

m2
−

1
∫

0

dx log
m2 − tx(1− x)

m2





=
λ2

32π2

(

1

ǫ
− γE + log

4πµ2

m2
− J(t/m2)

)

.

(25)

In class we have evaluated the same one-loop diagram (13) using Wilson’s hard-edge
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cutoff and got

F(t) =
λ2

32π2

(

log
Λ2
HE

m2
− 1 − J(t/m2)

)

. (26)

Likewise, in your homework#13 you should have obtained

F(t) =
λ2

32π2

(

log
Λ2
PV

m2
− J(t/m2)

)

=
λ2

32π2

(

log
Λ2
HD

m2
− 2 − J(t/m2)

)
(27)

for the respectively Pauli–Villars and higher-derivative UV regulators. Consequently, all

these cutoffs yield exactly the same result provided we identify

log Λ2
HE − 1 = logΛ2

PV = log Λ2
HD − 2, (28)

or equivalently

Λ2
HE = exp(1)× Λ2

PV , Λ2
HD = exp(2)× Λ2

PV . (29)

Likewise, the dimensional regularization’s result (25) becomes similar to that of all the other

cutoffs when we identify

1

ǫ
− γE + log(4πµ2) = log Λ2

HE − 1 = log Λ2
PV = log Λ2

HD − 2, (30)

or equivalently

µ2 × exp(1/ǫ) =
exp(γE)

4π
× Λ2

PV =
exp(γE − 1)

4π
× Λ2

HE =
exp(γE − 2)

4π
× Λ2

HD . (31)
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