DIMENSIONAL REGULARIZATION

The dimensional regularization of ultraviolet divergences involves analytic continuation
of the Euclidean momentum integrals to momentum spaces of non-integer dimensions D < 4

— which makes the integrals finite — and then taking the limit D — 4 (from below). Thus,
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where p is the reference energy scale at which the spherical momentum-space shell dk**d has
the same volume in D dimensions as in 4 dimensions. At much larger loop momenta, the

dk® shell’s volume becomes smaller in D < 4 dimensions than in 4 dimensions:
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and that’s what regularized the UV divergence of the integral (1).

Let’s take a closer look at the UV-regulating factor (marked in red in eq. (2)). For

D =4 — 2e,
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which becomes small when
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Thus, the effective UV cutoff scale? in dimensional regularization is
Ar = p? xexp(l/e) > p? (5)

In practice, one usually sets the reference energy scale i in the ball park of the energy scale
of the amplitude in question, for example p ~ |gnet|; consequently, for ¢ — +0 we have

Apr > p and hence Apr > energy scale of the amplitude.



Now consider a generic logarithmically divergent momentum integral; for most regular-

ization schemes, this means
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For the dimensional regularization, the effective UV cutoff scale is as in eq. (5), so we expect
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regulated integral = (same constant C') X (— + log ,u_2) + finite. (7)
€ m

Thus, we may identify the coefficient C' of the (1/€¢) pole obtaining from dimensional regu-

larization with the coefficient of log A? in the other regularization schemes.

Integrals over Momentum Spaces of Non-Integer Dimensions

Before we can use dimensional regularization, we need to learn how to perform inte-
grals over (Euclidean) momentum spaces of non-integer dimensions D. Let’s start with the

Gaussian integrals
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For any integer dimension D, k% = kI + k3 + - - - + k%), hence
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and therefore
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Let’s analytically continue this formula to the non-integer D. In other words, we let

/ dzD 5 exp(—th}) = (4nt) D/ (11)

for any D, integer or non-integer, real or complex. For non-integer D this formula maybe

thought as a definition of the Gaussian integral over a non-integer-dimensional space.

As to the non-Gaussian momentum integrals, we should re-express them in terms of
Gaussian integrals and then use eq. (11) for non-integer D. For example, consider the

dimensionally regulated momentum integral
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which appears in the context of the one-loop Feynman diagram
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for A(z) = m? — tz(1 — z). Using the I'-function integral
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for n = 2, we let
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and consequently
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= [dtte ™™™ x (4nt)"P/? = (47)~P/? /dttl_(D/Q) x e 1A
0 0
= (4m)"PP xT(2 - (D/2))AP2)=2

Note that on the penultimate line here, the integrand behaves as t*~(P/2) for t — 0. Con-
sequently, the integral converges whenever (this power of t) > —1, which means D < 4. Or
for complex D, whenever Re(D) < 4. Physically, the ¢ — 0 limit corresponds to k% — oo,
so the convergence/divergence of the [dt integral at ¢ — 0 corresponds to the UV conver-

gence/divergence of the original momentum integral.

Anyhow, for D =4 — 2¢ eq. (16) becomes
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Note that this is a finite formula for € > 0 (i.e., for D < 4), but it becomes singular in the

¢ — 0 limit because the I'(¢) function has a pole at € = 0.

Let’s take a closer look at this pole using I'(z+1) = xxI'(x). In particular, forz = ¢ — 0,
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where vg &~ 0.5772 is the [Euler—Mascheroni constanf. At the same time,
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In dimensional regularization, positive powers of ¢ — 0 correspond to negative powers of
log A%V — 00. And although such negative powers of log A%V go to zero much slower than
the negative powers of the A%JV itself, they do eventually go to zero in the very-large-UV-
cutoff-scale limit. Consequently, in dimensional regularization we neglect all positive powers
of € in various amplitudes (but only in the net product of all the factors). Thus, in eq. (18)

we approximate
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In class we have evaluated the same one-loop diagram (13) using Wilson’s hard-edge


https://mathworld.wolfram.com/Euler-MascheroniConstant.html

cutoff and got
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Likewise, in your homework#13 you should have obtained
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for the respectively Pauli-Villars and higher-derivative UV regulators. Consequently, all

these cutoffs yield exactly the same result provided we identify
log Ay — 1 = logAdy = logAfp — 2, (28)

or equivalently

Aip = exp(l) x Ady, Ajp = exp(2) x Ady. (29)

Likewise, the dimensional regularization’s result (25) becomes similar to that of all the other

cutoffs when we identify
1 2 2 2 2
~ = e +log(dmp®) = logApp — 1 = logApy = logApp — 2, (30)

or equivalently
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