
GOLDEN RULE and PHASE SPACE FACTORS

Fermi’s Golden Rule

Consider a perturbation theory in quantum mechanics, Ĥ = Ĥ0 + V̂ , where we use the

eigenstates of the un-perturbed Hamiltonian Ĥ0 as a basis while the perturbation V̂ causes

transitions between these basis states. In particular, consider the transition from some initial

state |i〉 into a continuum of some similar final states |f〉. Fermi’s Golden Rule gives us the

rate of such transitions to the first order in the perturbation V̂ :

Γ
def
=

d probability

d time
=

2πρ(f)

h̄
×

∣∣∣〈f | V̂ |i〉
∣∣∣
2

(1)

where

ρ(f)
def
=

dNfinal states

dEfinal
(2)

is the final state density. Equivalently,

Γ =

∫
dNfinal

∣∣∣〈f | V̂ |i〉
∣∣∣
2
×

2π

h̄
δ(Ef −Ei), (3)

where the energies Ei and Ef are measured by the un-perturbed Hamiltonian Ĥ0.

To derive the Fermi’s Golden Rule, suppose the quantum system in question at time t0 = 0

is in some eigenstate |i〉 of the un-perturbed Hamiltonian. The probability of finding this state

at some later time t > 0 in a different eigenstate |f〉 is

P (i → f) =
∣∣∣〈f | ÛI(t, 0) |i〉

∣∣∣
2
, (4)

where to the first order in the perturbation V̂

ÛI(t, 0) ≈ 1 −
i

h̄

t∫

0

dt′ V̂I(t
′) = 1 −

i

h̄

t∫

0

dt′ exp(+it′Ĥ0/h̄)V̂S exp(−it′Ĥ0/h̄), (5)
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cf. my notes on the Dyson series. Consequently,

〈f | ÛI(t, 0) |i〉 ≈ −
i

h̄

t∫

0

dt′ 〈f | e+itĤ0/h̄V̂Se
−itĤ0/h̄ |i〉

= −
i

h̄

t∫

0

dt′ exp(+it′Ef/h̄) 〈f | V̂S |i〉 exp(−it′Ei/h̄)

= −
i

h̄
〈f | V̂S|i〉 ×

t∫

0

dt′ exp(it′(Ef −Ei)/h̄)

= 〈f | V̂S|i〉 ×
1− exp(it(Ef − Ei)/h̄)

Ef − Ei
,

(6)

and therefore

P (i → f) =
∣∣∣〈f | V̂S|i〉

∣∣∣
2
×

sin2(t(Ef − Ei)/2h̄)

((Ef −Ei)/2)2
. (7)

In general, this probability is very small for any particular final state |f〉 unless Ef ≈ Ei.

However, for |f〉 belonging to the continuous spectrum of Ĥ0, we are interested not in the

transition to a specific final state but rather into any one of the similar final states f ∈ F ,

Pnet

(
i → (any f ∈ F)

)
=

∫

f∈F

dNf P(i → f) =

∫

f∈F

dNf

∣∣∣〈f| V̂S|i〉
∣∣∣
2
×

sin2(t(Ef − Ei)/2h̄)

((Ef − Ei)/2)2
. (8)

Under the integral, the energy-dependent factor is strongly peaked for Ef ≈ Ei, and this peak

becomes taller and narrower with the increasing time t. Indeed, let’s plot this factor as a

function of Ef − Ei for two different values of t: t1 (blue) and t2 = 2t1 (red),

∆E

sin2(t∆E/2h̄)/(∆E/2)2

(9)

In the long time limit t → ∞, this energy-dependent factor becomes an infinitely narrow but
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infinitely high peak, so we may approximate it by a δ-function, or rather

sin2(t(Ef − Ei)/2h̄)

((Ef − Ei)/2h̄)2
→

2πt

h̄
× δ(Ef −Ei) (10)

where the coefficient stems from

+∞∫

−∞

d(∆E)
sin2(t∆E/2h̄)

(∆E/2h̄)2
=

2πt

h̄
. (11)

Consequently, in the long time limit eq. (8) for the transition probability becomes

Pnet

(
i → (any f ∈ F)

)
=

2πt

h̄

∫

f∈F

dNf

∣∣∣〈f| V̂S|i〉
∣∣∣
2
× δ(Ef − Ei), (12)

and the overall factor of t in this formula means a uniform transition rate

Γ(i → f ∈ F )
def
=

dP (i → f ∈ F )

dt
=

∫

f∈F

dNf

∣∣∣〈f | V̂ |i〉
∣∣∣
2
×

2π

h̄
δ(Ef − Ei), (3)

exactly as in the Fermi’s Golden Rule.

Alas, the uniformity-in-time of the transition rate (11) is an artefact of the first-order

perturbation theory, which also leads to P (|i〉 stays |i〉) ≈ 1. In reality, we have a uniform ratio

Γ(i → f ∈ F )
def
=

1

P (i → i)(t)
×

d

dt
P (i → f ∈ F )(t), (13)

where

P (|i〉 stays |i〉) = exp
(
−t× Γtot(i → anything)

)
(14)

while to the first order in V̂

Γ(i → f ∈ F ) =

∫

f∈F

dNf

∣∣∣〈f | V̂ |i〉
∣∣∣
2
×

2π

h̄
δ(Ef −Ei), (15)

To illustrate the Fermi’s Golden Rule (15), consider an atom in an excited state emitting a

photon while the atom itself drops to a lower energy state. In this example, the initial and the
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final states are eigenstates of the free Hamiltonian

Ĥ0 = Ĥ(atom) + Ĥ(free photons) (16)

while the interactions between the quantum EM fields and the atom’s electrons comprise the

perturbation V̂ . For a moment, let’s fix the specific initial and final states of the atom as

well as the photon’s polarization λ. However, the final states still form a continuous family

parametrized by the photon’s momentum pγ . In the large-box normalization, the number of

such final states is

dNfinal =

(
L

2π

)3

d3kγ =
L3

(2π)3
× k2γ dkγ d

2Ωγ (17)

where d2Ωγ is the infinitesimal solid angle into which the photon is emitted. At the same time,

Enet
final − Enet

initial = h̄ckγ + Eatom
final − Eatom

initial = h̄ckγ − ∆Eatom, (18)

hence (to the first order of the perturbation V̂ )

Γ =
1

(2π)2h̄

∫
d2Ωγ

∫
dkγ k

2
γ × L3

∣∣∣
〈
atomf + γ

∣∣ V̂ |atomi〉
∣∣∣
2
× δ(h̄ckγ −∆Eatom). (19)

In this formula, the L3 factor in the density of states factor cancels against the (square of

the) L−3/2 factor in the matrix element due to the photon’s wave function in the large-box

normalization. Specifically, in the electric dipole approximation to the interaction between the

EM fields and the atom

V̂ ≈ −Ê(xatom) · d̂ (20)

where d̂ is the atom’s electric dipole moment, we have

〈
atomf + γ

∣∣ V̂ |atomi〉 ≈ − 〈γ(k, λ)| Ê(xatom |vac〉 · 〈f | d̂ |i〉atom

= −iL−3/2
√

2πh̄ωk e
−ik·xatom e∗k,λ · 〈f | d̂ |i〉atom

(21)

where ek,λ is the photon’s polarization vector. Plugging this matrix element into the Golden
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Rule equation (19), we arrive at

Γ ≈

∫
d2Ωγ

∫
dkγ k

2
γ ×

ω = ckγ
2π

∣∣∣e∗k,λ · 〈f | d̂ |i〉atom

∣∣∣
2
× δ(h̄ckγ −∆Eatom)

〈〈 integrating over the kγ 〉〉

=
(∆Eatom)3

2πh̄4c3

∫
d2Ωγ

∣∣∣e∗k,λ · 〈f | d̂ |i〉atom

∣∣∣
2
.

(22)

At this point, we may drop the
∫
dΩ integral and get the partial rate of photon emission in

a particular direction,

dΓ

dΩγ
=

(∆Eatom)3

2πh̄4c3
×
∣∣∣e∗k,λ · 〈f | d̂ |i〉atom

∣∣∣
2
. (23)

For the completely specified initial and final states of the atom — including their angular

momentum quantum numbers j and mj — the partial emission rates (23) dependent of the

photon’s direction, so they are worth calculating and comparing to the experiment.

Alternatively, we may not only integrate over the photon’s directions as in eq. (22) but also

sum over some discrete quantum numbers which we are not going to detect experimentally, for

example the photon’s polarization λ and the mj of the atom’s final state. This gives us a more

inclusive transition rate

Γ =
(∆Eatom)3

2πh̄4c3
×

∫
d2Ωγ

∑

λ

∑

mj(f)

∣∣∣e∗k,λ · 〈f | d̂ |i〉atom

∣∣∣
2

=
4(∆Eatom)3

3h̄4c3
×

∑

mj(f)

∣∣〈f | d̂ |i〉atom
∣∣2.

(24)

Beyond the First Order

Beyond the first order of the perturbation theory, Fermi’s Golden Rule for the transition
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rates — or rather ratios of transitions rates to the probability of the initial state’s survival

Γ(i → f ∈ F )
def
=

1

P (i → i)(t)
×

d

dt
P (i → f ∈ F )(t), (25)

— becomes

Γ(i → f ∈ F ) =

∫

f∈F

dNf

∣∣∣〈f | T̂ (E) |i〉
∣∣∣
2
×

2π

h̄
δ(Ef − Ei) (26)

where E = Ef = Ei and

T̂ (E) = V̂ + V̂
1

E + iǫ− Ĥ0

V̂ + V̂
1

E + iǫ− Ĥ0

V̂
1

E + iǫ− Ĥ0

V̂ + · · · . (27)

The modified transition rate (26) and the Lippmann–Schwinger series (27) follow from the

higher-order terms in the Dyson series for the evolution operator Ûi(t, 0), similarly to the first

order term giving rise to the Fermi’s Golden rule. However, the formal derivation of eqs. (26)

and (27) is rather complicated, so let me skip it from these notes, especially since this subject

is not directly germane to the Quantum Field Theory.

Also, let me state without proof the relation between the T̂ (E) operator and the S–matrix

elements. For any 2 eigenstates |i〉 and 〈f | of the un-perturbed Hamiltonian Ĥ0,

〈f | Ŝ |i〉 = 〈f |i〉 + 2πiδ(Ef − Ei)× 〈f | T̂ (E) |i〉 . (28)

Also, for the potential scattering of two non-relativistic particles — for which

Ĥ0 =
P̂2

reduced

2Mreduced
and V̂ = V (x̂relative), (29)

— the scattering amplitude is related to the T̂ (E) operator as

f(p → p′) = −
Mred

2πh̄2
〈
p′
∣∣ T̂ (E) |p〉 . (30)
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Phase Space Factors

Let us apply the Fermi’s Golden Rule — or rather the modified rule (26) — to the decay of

an unstable particle into n daughter particles. For simplicity, let’s ignore all the particles’ spins

and focus only on their momenta, thus |initial〉 = |p0〉 and 〈final| = 〈p′

1,p
′

2, . . . ,p
′

n|. Naively,

in the bog-box normalization, the density of such n-particle final states is

dNf =
n∏

i=1

d#(pi) =
n∏

i=1

L3 d3p′

i

(2πh̄)3
; (31)

however, due to net momentum conservation

〈
p′

1, . . . ,p
′

n

∣∣ T̂ |p0〉 = δp′

1
+···+p′

n,p0
× analytic

〈
p′

1, . . . ,p
′

n

∣∣ T̃ |p0〉 , (32)

and since the square of the Kronecker δp′

net
,p

0
is the same as the δp′

net
,p

0
itself, the Golden Rule

integral (26) becomes

Γ =

∫
d#(p′

1) · · ·

∫
d#(p′

n)
∣∣∣
〈
p′

1, . . . ,p
′

n

∣∣ T̃ |p0〉
∣∣∣
2
× δp′

1
+···+p′

n,p0
×

2π

h̄
δ(E′

1 + · · ·+ E′

n −E0)

=

∫
L3d3p′

1

(2πh̄)3
· · ·

∫
L3d3p′

n

(2πh̄)3

∣∣∣
〈
p′

1, . . . ,p
′

n

∣∣ T̃ |p0〉
∣∣∣
2
×

×

(
2πh̄

L

)3

δ(3)(p′

1 + · · ·+ p′

n − p0)×
2π

h̄
δ(E′

1 + · · ·+ E′

n − E0).

(33)

Now let’s change the normalization convention from the big-box to the infinite space. This

removes the powers of L3 from all the momentum integrals, δ-functions, and also the matrix

elements in our formulae; in particular, eq. (32) becomes

〈
p′

1, . . . ,p
′

n

∣∣ T̂ |p0〉 = (2πh̄)3δ(3)(p′

1 + · · ·+ p′

n − p0)×
〈
p′

1, . . . ,p
′

n

∣∣ T̃ |p0〉 , (34)

while eq. (33) becomes

Γ =

∫
d3p′

1

(2π)3
· · ·

∫
d3p′

n

(2π)3

∣∣∣
〈
p′

1, . . . ,p
′

n

∣∣ T̃ |p0〉
∣∣∣
2
×

× (2π)3δ(3)(p′

1 + · · ·+ p′

n − p0)× (2π)δ(E′

1 + · · ·+ E′

n −E0)

(35)

(where I have also changed the units to h̄ = c = 1). Furthermore, in a relativistic theory we

may combine the δ-functions for the momentum conservation and the energy conservation into
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a single 4D δ-function

(2π)3δ(3)(p′

1+ · · ·+p′

n−p0)× (2π)δ(E′

1+ · · ·+E′

n−E0) = (2π)4δ(4)(p′1+ · · ·+p′n−p0). (36)

Also, we should use the relativistic normalization of the particle states, which changes the

transition matrix element to

〈
p′

1, . . . ,p
′

n

∣∣M̂ |p0〉 ≡
〈
p′

1, . . . ,p
′

n

∣∣ T̃ |p0〉rel

=
√

2E0

n∏

i=1

√
2E′

i ×
〈
p′

1, . . . ,p
′

n

∣∣ T̃ |p0〉nonrel .
(37)

Consequently, in eq. (35) we may replace the non-relativistic
∣∣∣〈p′

1, . . . ,p
′

n| T̃ |p0〉
∣∣∣
2
factor with

the relativistic |M|2 divided by a 2E factor for each initial or final particle, thus

Γ =
1

2E0

∫
d3p′

1

(2π)3 2E′

1

· · ·

∫
d3p′

n

(2π)3 2E′
n

∣∣〈p′1, . . . , p′n
∣∣M|p0〉

∣∣2 × (2π4)δ(4)(p′1 + · · ·+ p′n − p0).

(38)

In other words, an unstable particle (0) decays into n final-state particles (1′) + · · · + (n′) at

the rate

Γ =

∫
dPdecay ×

∣∣〈1′, 2′, . . . , n′
∣∣M|0〉

∣∣2 (39)

where M(0 → 1′ + · · · + n′) ≡ 〈1′, . . . , n′| M̂ |0〉 is the relativistic decay amplitude calculated

according to the Feynman rules, and dP is the phase space factor

dPdecay =
1

2E0
×

n∏

i=1

d3p′

i

(2π)32E′

i

× (2π)4δ(4)(E′

1 + · · ·+ E′

n − E0). (40)

Likewise, the transition rate for a generic 2-particle to n-particle scattering process is given

by

Γ =
1

2E1 × 2E2

∫
d3p′

1

(2π)3 2E′

1

· · ·

∫
d3p′

n

(2π)3 2E′
n

∣∣〈p′1, . . . , p′n
∣∣M|p1, p2〉

∣∣2 ×

× (2π4)δ(4)(p′1 + · · ·+ p′n − p1 − p2).

(41)

In terms of the scattering cross-section σ, the rate (41) is Γ = σ×flux of initial particles. In the

large-box normalization the flux is L−3|v1−v2|, so in the continuum normalization it’s simply
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the relative speed |v1 − v2|. Consequently, the total scattering cross-section is given by

σtot =
1

4E1E2|v1 − v2|

∫
d3p′

1

(2π)3 2E′

1

· · ·

∫
d3p′

n

(2π)3 2E′
n

∣∣〈p′1, . . . , p′n
∣∣M|p1, p2〉

∣∣2 ×

× (2π4)δ(4)(p′1 + · · ·+ p′n − p1 − p2),
(42)

or in other words

σtot =

∫
dPscattering ×

∣∣〈1′, 2′, . . . , n′
∣∣M|1, 2〉

∣∣2 (43)

for dPscattering =
1

4E1E2|v1 − v2|
×

n∏

i=1

d3p′

i

(2π)32E′

i

× (2π)4δ(4)(E′

1 + · · ·+ E′

n −E0). (44)

A note on Lorentz invariance of decay rates or cross-sections. The matrix elements 〈final|M |initial〉

are Lorentz invariant, and so are all the integrals over the final-particles’ momenta and the δ-

functions. The only non-invariant factor in the decay-rate formula (38) is the pre-integral 1/E0,

hence the decay rate of a moving particle is

Γ(moving) = Γ(rest frame)×
M

E
(45)

where M/E is precisely the time dilation factor in the moving frame.

As to the scattering cross-section, it should be invariant under Lorentz boosts along the

initial axis of scattering, thus the same cross-section in any frame where p1 ‖ p2. This includes

the lab frame where one of the two particles is initially at rest, the center-of-mass frame where

p1 + p2 = 0, and any other frame where the two particles collide head-on. And indeed, in any

frame where both p1 and p2 are parallel to the z axis, the pre-integral factor in eq. (42) for the

cross-section becomes

1

4E1E2|v1 − v2|
=

1

4|E1p2 − E2p1|
=

1

4|ǫxyµνp
µ
1p

ν
2|

, (46)

which is manifestly invariant under the SO+(1, 1) group of Lorentz boosts along the z axis.
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Let’s simplify eq. (42) for a 2 particle → 2 particle scattering process in the center-of-mass

frame where p1 + p2 = 0. In this frame,

E1E2 |v1 − v2| = |E2p1 −E1p2| = |p| × (E1 + E2 = Etot), (47)

hence the phase-space factor

Pscattering =
1

4|p|Etot
× Pint (48)

for

Pint =

∫
d3p′

1

(2π)3 2E′

1

∫
d3p′

2

(2π)3 2E′

2

(2π)4δ(3)(p′

1 + p′

2)δ(E
′

1 + E′

2 −Enet)

=

∫
d3p′

1

(2π)3 × 2E′

1 × 2E′

2

(2π)δ(E′

1(p
′

1) + E′

2(−p′

1)− Enet)

=

∫
d2Ωp′ ×

∞∫

0

dp′
p′2

16π2E′

1E
′

2

× δ(E′

1 + E′

2 −Etot)

=

∫
d2Ωp′

[
p′2

16π2E′

1E
′

2

/
d(E′

1 + E′

2)

dp′

]when

E′

1
+E′

2
=Etot

.

(49)

On the last 3 lines here E′

1 = E′

1(p
′

1) =
√

p′2 +m′2
1 while E′

2 = E′

2(p
′

2 = −p′

1) =
√

p′2 +m′2
2 .

Consequently,

dE′

1

dp′
=

p′

E′

1

,
dE′

2

dp′
=

p′

E′

2

, (50)

d(E′

1 + E′

2)

dp′
=

p′

E′

1

+
p′

E′

2

=
p′

E′

1E
′

2

× (E′

2 + E′

1 = Etot), (51)

[
p′2

16π2E′

1E
′

2

/
d(E′

1 + E′

2)

dp′

]when

E′

1
+E′

2
=Etot

=
p′

16π2Etot
, (52)

and therefore

Pscattering =
1

4|p|Etot
×

p′

16π2Etot
×

∫
d2Ωp′

=
p′

p
×

1

64π2E2
tot

×

∫
d2Ωp′ .

(53)

Note: since the scattering amplitude M may depend on the directions of the scattered particles,
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we should multiply the phase space factor by the |M|2 before integrating over those directions.

This means that we should not evaluate the angular integral in eq. (53) but rather re-interpret

that formula as

dPscattering =
(p′/p)cm
64π2E2

cm
× dΩcm (54)

where

E2
cm = E2

tot in the center-of-mass frame, (55)

dΩcm = d2Ωp′

1
= d2Ωp′

2
in the center-of-mass frame, (56)

(p′/p)cm =
|p′

1| = |p′

2|

|p1| = |p2|
in the center-of-mass frame; (57)

for an elastic scattering (p′/p)cm = 1. (58)

In light of eq. (54), in the center-of-mass frame

dσ(1 + 2 → 1′ + 2′) =
∣∣〈p′1 + p′2

∣∣M|p1 + p2〉
∣∣2 × dPscattering

=
(p′/p)cm
64π2E2

cm
×

∣∣〈p′1 + p′2
∣∣M|p1 + p2〉

∣∣2 × dΩcm

(59)

and hence the partial cross-section for scattering in a particular direction is

dσ(1 + 2 → 1′ + 2′)

dΩcm
=

(p′/p)cm
64π2E2

cm
×
∣∣〈p′1 + p′2

∣∣M|p1 + p2〉
∣∣2 . (60)

Finally, the net cross-section — into specific final particle species but emitted in any direction

— obtains as an integral

σnet(1 + 2 → 1′ + 2′) =
(p′/p)cm
64π2E2

cm
×

∫
d2Ωcm

∣∣〈p′1 + p′2
∣∣M|p1 + p2〉

∣∣2 . (61)

Note: the net cross-sections have same values in all frames where the initial momenta are

collinear, so you may use eq. (61) in any such frame, provided you translate the total energy

and the (p′/p) ratio to the center-of-mass frame according to

E2
cm = (E1 + E2)

2 − (p1 + p2)
2 = (p1 + p2)

2 = Mandelstam’s s, (62)
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(p′/p)2cm =
s2 − 2s(m′2

1 +m′2
2 ) + (m′2

1 −m′2
2 )

2

s2 − 2s(m2
1 +m2

2) + (m2
1 −m2

2)
2

. (63)

But the infinitesimal solid angles dΩ are not invariant under Lorentz boosts along the scattering

axis, so eq. (60) for the partial cross-section applies only in the center-of mass frame. In any

other collinear frame, we would have

dσ

dΩ
=

dσ

dΩcm
×

dΩcm

dΩ
(64)

with a non-trivial frame-dependent factor dΩcm/dΩ.

Finally, let me write down the phase-space factor for a 2-body decay (1 particle → 2 particles)

in the rest frame of the initial particle. The under-the-integral factors for such a decay are the

same as in eq. (49) for a 2 → 2 scattering, but the pre-integral factor is 1/2M0 instead of

1/4pEcm, thus instead of eq. (54) we get

dPdecay =
1

2M0
×

p′

16π2(Etot = M0)
× dΩcm =

p′

32π2M2
0

× dΩcm . (65)

Consequently, the partial decay rate (for the final particles flying along a particular axis) is

dΓ(0 → 1′ + 2′)

dΩcm
=

p′

32π2M2
×
∣∣〈p′1 + p′2

∣∣M|p0〉
∣∣2 , (66)

and the net decay rate — into specific particle species but flying in any directions — is

Γ(0 → 1′ + 2′) =
p′

32π2M2
×

∫
d2Ωcm

∣∣〈p′1 + p′2
∣∣M|p0〉

∣∣2 . (67)

Postscript: In these notes, I have treated all particles as scalars and ignored their spin states.

For scattering of decay processes involving particles with non-zero spins, we should distinguish

between the polarized cross-sections or decay rates — in which we know the spin states of all

the initial and final particles, — and the un-polarized cross-sections or decay rates — in which

we sum over the final particles’ spin states and average over the initial particles’ spin states. I

shall explain this issue later in class when we get to QED.
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