
Lorentz Symmetry of Particles and Fields

The continuous Lorentz symmetry group SO+(3, 1) comprises Lorentz boosts in all di-

rections, space rotations around all axes, and all combinations of rotations and boosts.

The generators of this group form an antisymmetric tensor Ĵµν = −Ĵνµ, similar to the

Ĵab = −Ĵba generators of the SO(N) symmetries. The commutation relations between the

Lorentz generators follow from

Ĵµν
orbital = ixµ∂ν − ixν∂µ, (1)

hence

[
Ĵκλ, Ĵµν

]
= igλµĴκν − igκµĴλν − igλν Ĵκµ + igκν Ĵλµ. (2)

In 3D terms, the Ĵ ij = ǫijkĴk are the angular momenta which generate the 3–space rotations,

while the Ĵ0i = −Ĵ i0 = K̂i generate the Lorentz boosts. The commutation relations (2) in

terms of the Ĵ and K̂ components become

[
Ĵ i, Ĵj

]
= iǫijkĴk,

[
Ĵ i, K̂j

]
= iǫijkK̂k,

[
K̂i, K̂j

]
= −iǫijkĴk. (3)

(The proof is part of problem#3 of the current homework#5.) Note the red minus sign in

the commutator of the two boost generators; for similar generators of the compact SO(4)

group this sign would be plus. Consequently the quadratic Casimir
⋆
of the Lorentz algebra

C2 = 1
2
Ĵµν Ĵ

µν = Ĵ2 − K̂2 (4)

is not positive definite, unlike the SO(4) Casimir Ĵ2 + K̂2. A mixed-signature but non-

degenerate Casimir like (4) means that the corresponding Lie group is simple but non-

compact, unlike a simple and compact SO(4) group. And while simple compact groups have

plenty of finite unitary multiplets — in fact, every finite representation of such a group is

unitary, — for the simple non-compact groups like Lorentz SO+(3, 1) it’s the other way

around:

⋆ The quadratic Casimir of a Lie algebra is a quadratic combinations C2 = gabT
aT b of the generators

which commutes with the whole algebra, [C2, T
c] = 0 ∀T c. For example, the quadratic Casimir of the

SO(3) algebra is C2 = J
2.
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⋆ There are finite but non-unitary representations like the vector 4 or the tensors.

⋆ There are unitary but infinite representations like the mass shell.

• But there are no finite unitary representations except the trivial singlet.

In quantum field theory, the fields form finite but non-unitary multiplets like Aµ(x) or

F µν(x), while the particle states form unitary but infinite multiplets.

Particle Representations of the Lorentz Group

Let’s start with the spinless particles which do not have any polarization quantum num-

bers, so their quantum states |p〉 can be labeled just by the 3–momentum p, or equivalently

by the energy-momentum 4–vector pµ which lie on the mass shell p0 = +
√
m2 + p2. Under a

Lorentz symmetry, the momentum transforms as a 4–vector, p → p′ = Lp, or in components

p′µ = Lµ
νp

ν , hence in the Hilbert space of the one-particle states

D̂(L) |p〉 = |Lp〉 (5)

for some unitary operator D̂(L). Eq. (5) is the prototypical particle representation of the

Lorentz symmetry: It is unitary, but the members form a continuous family — the mass

shell — rather than a finite set.

Now let’s promote the particle representation (5) to the Fock space of arbitrary number

of spinless particles. The vacuum state is Lorentz-invariant, thus D̂(L) |vac〉 = |vac〉 for any

L ∈ SO+(3, 1). At the same time, the one-particle states |p〉 = â†p |vac〉 transform according

to eq. (5), hence

D̂(L)â†p |vac〉 = â†Lp |vac〉

=

D̂(L)â†pD̂
†(L) |vac〉

(6)

and therefore

D̂(L)â†pD̂
†(L) = â†Lp . (7)

Consequently, for any multi-particle state

|p1, p2, . . . , pn〉 = â†p1â
†
p2 · · · â

†
pn |vac〉 (8)
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we have

D̂(L) |p1, p2, . . . , pn〉 = D̂(L)â†p1â
†
p2 · · · â

†
pn |vac〉

= D̂(L)â†p1D̂
†(L)× D̂(L)â†p2D̂

†(L)× · · ·

· · · × D̂(L)â†pnD̂
†(L)× D̂(L) |vac〉

= â†Lp1 â
†
Lp2

· · · â†Lpn |vac〉

= |Lp1, Lp2, . . . , Lpn〉 .

(9)

In other words, we have simultaneous Lorentz transform of every particle, pi → Lpi.

⋆ ⋆ ⋆

Now consider particles with several spin or polarization states s. For such particles, the

Hilbert space of one-particle states spans |p, s〉 where the momentum pµ spans the mass

shell, while s spans some finite set of spin or polarization states. The Lorentz symmetries

act on such states as

D̂(L) |p, s〉 =
∑

s′

Css′(L, p)
∣∣Lp, s′

〉
(10)

where Css′(L, p) is some matrix acting on the spin/polarization states. Eq. (10) is a more

general kind of a particle representation of the Lorentz group then (5), and we shall classify all

such particle representations in a moment. But first, let’s promote the Lorentz transform (10)

to the Fock space of the multi-particle states. Similar to the spinless particle case, we have

Lorentz-invariant vacuum state |vac〉 while the one-particle states |p, s〉 = â†p,s |vac〉 transform

according to eq. (10), hence

D̂(L)â†p,sD̂
†(L) =

∑

s′

Cs,s′(L, p)× â†Lp,s′ (11)

and therefore

D̂(L) |(p1, s1), . . . , (pn, sn)〉 =
∑

s′
1
,...,s′n

Cs1,s′1
(L, p1) · · ·Csn,s′n(L, pn)×

∣∣(Lp1, s′1), . . . , (Lpn, s′n)
〉
.

(12)

In other words, we have simultaneous Lorentz transform of all the particles according to

eq. (10). Thus, given the one-particle representation (10) of the Lorentz group, all the

multi-particle representations follow according to eq. (12).
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This brings us our next task: Classifying all the one-particle representations (10), and in

particular, classifying all the finite multiplets {s} of the allowed spin/polarizations states s.

The key to this classification is the little group G(p) of the momentum 4–vector pµ, that is,

the subgroup of the Lorentz group which leaves pµ invariant,

G(p) = {L ∈ SO+(3, 1) such that Lµ
νp

ν = pµ}. (13)

Indeed, let’s pick any momentum pµ on the mass shell, and any Lorentz transform in the

little group of that momentum, L ∈ G(p). Since L leaves p invariant, it acts only on the

polarization/spin states of the particles with this momentum, thus

for L ∈ G(p) : D̂(L) |p, s〉 =
∑

s′

Cs,s′(L, p)
∣∣p, s′

〉
(14)

for the same p′ = Lp = p. Moreover, since the operator D̂(L) is unitary — indeed, all

the operators representing symmetries in the Hilbert space must be unitary, — the matrix

Cs,s′(L, p) must be a unitary matrix.

Now let’s vary L but keep it within the little group G(p) of some fixed momentum pµ.

Eq. (14) gives us a map from such L ∈ G(p) to the unitary matrices ‖Cs,s′(L, p)‖, so this

map is a finite unitary representation of the little group G(p). Therefore, to classify the finite

multiplets of particle spin/polarization states, we need to classify the little groups G(p) and

their finite unitary representations. This was done back in 1926 by Eugine Wigner.

Here is the quick summary of the Wigner Theorem:

⋆ The massive particles have definite SO(3) spins j = 0, 1
2
, 1, 3

2
, 2, . . ., and their polar-

ization states s come in multiplets of size 2j + 1.

⋆ The massless particles come in singlet multiplets |p, λ〉 of definite helicity λ, i.e., the

angular momentum component in the direction of the momentum p. This helicity

remains invariant under the continuous Lorentz transforms,

∀L ∈ SO+(3, 1) : D̂(L) |p, λ〉 = |Lp, λ〉 × eiphase. (15)

• The tachyons — if they exist at all — do not have any spin or polarization quantum

numbers. Their quantum states of definite momentum p come in trivial singlets |p〉.
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Massive Particles

Let’s start with a massive particle at rest, so its momentum is pµ = (+m, 0). Among the

Lorentz symmetries, the 3–space rotations leave this momentum invariant while the boosts

do not, so the little group is G(p) = SO(3), the group of space rotations. The finite unitary

representations of this group should be well known to the students of this class: they span

states |j,m〉 for a fixed j = 0, 1
2
, 1, 3

2
, 2, . . . while m runs from −j to +j by 1, thus 2j + 1

states in a multiplet. In quantum field theory, each particle species has a definite spin j, so

it has 2j + 1 spin states labeled by m.

Now consider the same kind of a massive particle but moving at some sub-light velocity

v, |v| < 1. Let Bv be the Lorentz by velocity v, then B−1
v

puts the particle in its rest

frame, p′ = B−1
v

p = (m, 0). Subsequently, any space rotation R ∈ SO(3) preserve the rest

momentum p′, hence the original (moving) momentum p is preserved by L = B
v
RB−1

v
,

R ×B−1
v

p = B−1
v

p =⇒ B
v
RB−1

v
p = p. (16)

Thus, the little group of p comprises L = B
v
RB−1

v
for all space rotations R. Clearly, this

little group is isomorphic to the rotation group, G(p) ∼= SO(3), so it has similar multiplet

types to the SO(3). Consequently, a massive particle of any velocity has a definite spin j

and has 2j + 1 spin states.

The generators of the little groupG(p) are the boosted angular momenta, J̃ i = BvĴ
iB−1

v .

Specifically, you shall see in your current homework#5 (problem 4) that one of the generators

is the helicity — the component Ĵ‖ of the angular momentum J in the direction of the

velocity v,

λ̂ = J̃‖ =
v · Ĵ

|v|
, (17)

— while the other two generators are the two transverse (to v) components of

J̃⊥ = γ
(
Ĵ + v × K̂

)⊥
. (18)

Since Ĵ‖ is the only generator that’s a pure angular momentum — as opposed to a mixture

of an angular momentum and a boost generator, — it’s convenient to organize the members
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of a spin multiplet (j) into eigenstates |j, λ〉 of the helicity λ̂ rather than into eigenstates

|j,m〉 of the J̃z generator. Thus, the spin multiplet for a massive particle comprises states

|j, λ〉 for a fixed j and λ running over 2j + 1 values from −j to +j.

The bottom line is, a particle representation of the Lorentz symmetry for a massive

particle is parametrized by the mass or rather m2 > 0 and spin j = 0, 1
2
, 1, 3

2
, 2, . . . — where

both m2 and j have specific values for each particle species, — while the quantum states in

this multiplet are |p, λ〉 where p spans the mass shell for mass m while λ runs from −j to

+j by 1.

Massless Particles

A massless particle must move at the speed of light, hence p0 = +|p| and there is no

rest frame. So let’s start with the example of the particle moving in +z direction, thus

pµ = (E, 0, 0, E). As you shall see in problem 2 of the homework#5, the little group of this

momentum is generated by

Îx = Ĵx − K̂y, Îy = Ĵy + K̂x, and Ĵz, (19)

which obey the commutation relations

[Ĵz , Îx] = iÎy, [Ĵz , Îy] = −iÎx, [Îx, Îy] = 0. (20)

These commutation relations are similar to the commutations relations of the p̂x, p̂y, and Ĵz

— which together generate the translations and the rotations in the xy plane. Consequently,

the little group of a lightlike momentum pµ is isomorphic to the group if continuous isometries

of a 2D plane, G(p) ∼= ISO(2).

The ISO(2) group is non-compact but it is also non-simple. Consequently, it does have

some non-trivial finite unitary representations. Specifically, they are non-trivial singlet states

|λ〉 of definite helicity λ which are also annihilated by the Îx,y operators,

Ĵz |λ〉 = λ |λ〉 , Îx |λ〉 = 0, Îy |λ〉 = 0. (21)

For other directions of the massless particle’s motion, the little group G(p) is also iso-

morphic to ISO(2), and the generators of the G(p) are the helicity Ĵ‖ and the two transverse
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(to the velocity) components Î⊥ of

Î = Ĵ + v × K̂. (22)

Again, the finite unitary multiplet of this group are singlet states |λ〉 of definite helicity

which are also annihilated by the Î⊥ operators,

Ĵ‖ |λ〉 = λ |λ〉 , Î⊥ |λ〉 = 0. (23)

Thus, the particle representations of the continuous Lorentz symmetry SO+(3, 1) have defi-

nite helicities λ, with the states being |p, λ〉 where the momentum pµ spans the m2 = 0 mass

shell while the helicity λ stays fixed.

Moreover, you shall see in problem#1 of you next homework#6 that for a massless

particle with p2 = 0, eqs. (23) can be summarized in a manifestly Lorentz-invariant way as

1
2
ǫµαβγ Ĵ

αβP̂ γ |p, λ〉 = λpµ |p, λ〉 . (24)

This formula acts as an eigenvalue equation for the helicity λ, and its Lorentz invariance

(under the continuous Lorentz symmetries only) means that the helicity itself is invariant

under the continuous Lorentz transforms, thus

D̂(L) |p, λ〉 = |Lp, same λ〉 × eiphase. (25)

Thus, the continuous Lorentz symmetries do not change the helicities of massless parti-

cles. And that’s why massless particles do not have multiplets of 2j + 1 different helicity

states, instead each helicity eigenstate is a singlet multiplet all by itself. Indeed, the real-life

observations confirm this rule:

⋆ The photons have helicities λ = +1 and λ = −1 but not λ = 0. If the photons

were massive, the Lorentz transformations would have turned the |λ = ±1〉 states into

combinations involving |λ = 0〉, which would require them to have all 3 components

of j = 1 spin multiplet. But the real-life photons are strictly massless, so the mixing

of different helicities never happen, and that’s how the photons make do with the two

transverse polarizations λ = ±1 without having the longitudinal polarization λ = 0.
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⋆ The gravitons have helicities λ = ±2 but not λ = ±1 or λ = 0. Again, if the gravitons

were massive they would need to have all 5 helicity states of the j = 2 multiplet, but

the massless gravitons make do with just the λ = ±2 helicities without the other 3

values.

By the way, the reason photons and gravitons have two helicity values which differ by

a sign — λ = ±1 for the photons and λ = ±2 for the gravitons, — is the parity symmetry

P of the electromagnetism and gravity. The parity — which reverses the space coordinates

but not the time, P : (t,x) → (+t,−x), — flips the direction of the particle’s velocity v

but not of its angular momentum J, so it changes the sign of the helicity λ = v · J/|v|.

Consequently, once we add the parity symmetry to the continuous Lorentz symmetries, it

pairs up the massless |p,+λ〉 and |p,−λ〉 singlets of the SO+(3, 1) symmetry to a doublet of

the O+(3, 1). (Except the |p, λ = 0〉 states which remain singlets.)

However, in theories without the parity symmetry — or even approximate parity symme-

try — the particle multiplets with helicities ±λ do not have to pair up. Instead, we may have

massless particle species that have only one helicity λ without the opposite helicity −λ. In

particular, in the early version of the Standard Model which had exactly massless neutrinos

and antineutrinos, the neutrinos had a single helicity λ = −1
2
only, while the antineutrinos

had the opposite helicity λ = +1
2
only.

Once the neutrino oscillations were discovered in 2001, the Standard model was modified

to give the neutrinos a small mass. (Or rather, a small mass matrix which is non-diagonal

in the (νe, νµ, ντ ) basis, hence the neutrino oscillations.) Consequently, both neutrinos and

antineutrinos are massive spin j = 1
2
particles which have both λ = +1

2
and λ = −1

2
helicities.

However, all the experimentally observed neutrinos and antineutrinos are ultra-relativistic

with γ > 106, and in this regime the weak interactions — which are the only interactions

of the neutrinos — involve only the left-handed neutrinos with λ = −1
2
or the right-handed

antineutrinos with λ = +1
2
. The opposite helicity states — the neutrinos with λ = +1

2
and

the antineutrinos with λ = −1
2
— might exist, but we shall never see them experimentally.

Alternatively, we may have Majorana neutrinos (which I shall explain later in class) in which

the neutrino and the antineutrino belong to the same spin j = 1
2
multiplet (ν, ν̄). At the

ultra-relativistic velocities, the λ = −1
2
state of this spin doublet appear to be a neutrino

while the λ = +1
2
state appears to be an antineutrino.
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Tachyons

A tachyon is a hypothetical particle moving faster them light. No experiment have ever

seen a tachyon, and classically they cannot exist since a particle with initial velocity slower

then light cannot be accelerated to a superluminal velocity. However, in quantum mechanics

a collision of other particles may create a tachyon whose initial velocity is already faster then

light. Then, regardless of the forces acting on such a tachyon its velocity would always stay

faster then light, until it is eventually destroyed in some other particle collision.

A tachyon has a spacelike momentum pµ with p0 < 0, which corresponds to a negative

m2. Indeed, for any particle ~p = vp0 (in c = 1 units), hence for |v| > 1 |p| > |p0 and

consequently p2 = (p0)2−p2 < 0. Therefore, a tachyon has no rest frame, but instead there

is a frame where the velocity is infinite and the energy vanishes, pµ = (0,p).

For example, consider a frame where pµ = (0, 0, 0, pz). The little group of this momentum

is generated by the Ĵµν with µ, ν 6= z, namely Ĵxy = Ĵz , Ĵ0x = K̂x, and Ĵ0y = K̂y, and

the little group G(p) itself is SO+(2, 1) — the Lorentz group in 2 space dimensions (x and

y but not z) and one time dimension. Likewise, for any lightlike pµ the little group G(p) is

isomorphic to the +SO(2, 1).

Unlike the simple and compact SO(3) group or the non-simple and non-compact ISO(2)

group, the SO+(2, 1) group is simple but non-compact. Consequently, it does not have any

non-trivial finite unitary representations. Physically, this means that the tachyons — if they

exist at all — do not have any non-trivial spin or helicity states; instead, they are spinless

particles (j = 0) with λ = 0 only. In other words, a particle representation of the Lorentz

group for a tachyon species comprises states |p〉 where p spans the tachyonic mass shell (fixed

negative p2) but there are no spin or polarization quantum numbers of any kind.

Once we go beyond the ordinary quantum mechanics to the quantum field theory, we

find that in theories with a stable vacuum state |vac〉 the tachyons do not exist. Instead, if

we happen to have a field with a seemingly negative m2, this field gives rise to a vacuum

instability rather than to tachyonic quanta. But this issue is outside the scope of these notes

Lorentz symmetries, so I shall explain it from the blackboard, or rather from the document

camera.
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Wigner Theorem in Other Dimensions

The Wigner theorem can be easily generalized to spacetimes of d > 4 dimensions and

the corresponding SO+(d− 1, 1) Lorentz symmetries. Such generalizations are particularly

important for the string theory, especially for d = 26 for the bosonic string and d = 10 for

the superstring.

⋆ The massive particles with p2 = m2 > 0 form “spin” multiplets of the SO(d − 1)

rotation symmetry, or rather the space rotation symmetry boosted to the particle’s

rest frame, which is isomorphic to the SO(d− 1).

⋆ The massless particles with p2 = 0 form “helicity” multiplets of the SO(d−2) symmetry

of rotations in planes transverse to the particle’s velocity. In addition, each state in

the multiplet is annihilated by the Îν = (pµ/E)Ĵµν generators analogous to the Î⊥ for

d = 4.

∗ Note that for d = 4 the SO(2) symmetry is abelian, so all the helicity multiplets

are singlets |λ〉, although they are non-trivial singlets for λ 6= 0. However, in higher

dimensions d > 4, the SO(d − 2) group of transverse rotations becomes non-abelian

and develops larger multiplets. For example, for d = 5, the SO(3) “helicity” multiplets

comprise the |j,m〉 states with a fixed j and m running from −j to +j.

∗ Nevertheless, the SO(d−2) “helicity” multiplets of massless particles are smaller than

the SO(d− 1) “spin” multiplets of the massive particles. For example, in d = 10 the

massive vector multiplet of the SO(9) has 9 polarization states — 8 transverse and

1 longitudinal, — while the massless vector multiplet of the SO(8) has only the 8

transverse polarizations but the longitudinal polarization does not exist.

• In any dimension, if a tachyon exist at all, it must be a scalar without any polarization

or spin-like quantum numbers.

For completeness sake, let me also say a few words about the lower spacetime dimensions,

namely d = 2 and d = 3.

⋆ In d = 2 dimensions (one space one time) there are no meaningful spin or helicity

quantum numbers and the particle multiplet of the SO+(1, 1) Lorentz symmetry com-

prises just the |p〉 spinless states. Hence, all kinds of fields — scalars, vectors, spinors,

etc., — have the same kinds of particles as their quanta.
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∗ The massless particles in d = 2 have only two values for their velocities, v = +1 (move

to the right at the speed of light) or v = −1 (move to the left at the speed of light), and

no continuous boost can change the sign of this velocity. Consequently, there are two

kinds of massless particles, the right movers with pµ = (+E,+E) and the left movers

with pµ = (+E,−E), and the continuous Lorentz symmetries do not mix them up.

⋆ In d = 3 dimension (two space one time), there is no meaningful SO(1) “helicity”, so

the massless photon has only one transverse polarization; and likewise for the other

kinds of massless particles.

∗ On the other hand, the massive particles in d = 3 do have meaningful SO(2) “spins”.

However, since the SO(2) group is abelian, all the “spin” multiplets are singlets of

definite m (the eigenstate of the J̃xy). Although if we include the parity (a mirror

reflection in space) with the Lorentz symmetry, then the states |+m〉 and |−m〉 pair

up into doublets.

∗ Also, for the abelian SO(2) “spin” group, the value of m does not have to be integer

or half integer but could be any real number. In perturbative field theories, the quanta

of fields belonging to specific SO(2, 1) Lorentz multiplets always have integer or half-

integer m, but in the non-perturbative theories one may get composite particles with

fractional “spins” m. Such fractional-spin particles are called anyons, and while they

are quite rare in relativistic field theories, they are more common in condensed matter.

For example, they play a key role in the fractional quantum Hall effect.

Lorentz Multiplets of Fields

Unlike the particle states which form infinite but unitary multiplets of the Lorentz sym-

metry, the field components form finite but generally non-unitary multiplets, for example

the vector multiplet Aµ(x) or the antisymmetric tensor multiplet F µν(x). However, when

considering the Lorentz transformations of the fields’ components into each other, one should

also keep in mind that the points x on which the fields depend also transform into each other.

For example, under an active Lorentz transform

xµ to x′µ = Lµ
νx

ν , (26)
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the scalar field Φ(x) transforms into itself but at a new x, namely

Φ′(x′) = Φ(x). (27)

For the vector field — or rather the vector multiplet of the 4 field components Aµ(x), — the

transformation involves both changing the position x and transforming the components into

each other,

A′µ(x′) = Lµ
νA

ν(x). (28)

Likewise, the antisymmetric tensor multiplet of fields F µν(x) = −F νµ(x) transforms to

F ′µν(x′) = Lµ
κL

ν
λF

κλ(x), (29)

etc., etc. Most generally, a Lorentz multiplet of fields have some finite number n of compo-

nents ϕα(x) where α can be any kind of vector, tensor, spinor, etc., index or multi-index.

Under a Lorentz symmetry L, the components move to the new location x′ = Lx as well as

mix with each other according to

ϕ′α(x′) =
∑

β

Mα
β(L)× ϕβ(x) (30)

where L → ‖Mα
β(L)‖ is some representation of the Lorentz group by n×n matrices. So our

next task is to classify the finite representations of the Lorentz group.

The continuous SO+(3, 1) Lorentz group is related to the 4D rotation group SO(4)

by analytic continuation of the real rotations to complex angles. Consequently, any finite

representation of the SO(4) group can be analytically continued to an equally finite rep-

resentation of the Lorentz group, although such analytic continuation will not be unitary

any more. Thus, given the list of all the finite SO(4) representations we would immediately

get a complete list of finite Lorentz representations. But since many students are probably

unfamiliar with the SO(4) representations, let me use a different approach.
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Let’s reorganize the Lorentz generators Ĵ and K̂ into two non-hermitian 3–vectors

Ĵ+ = 1
2

(
Ĵ + iK̂

)
and Ĵ− = 1

2

(
Ĵ − iK̂

)
= Ĵ

†
+. (31)

As you shall see in homework#6, the components of these two vectors obey the SO(3)×SO(3)

like commutation relations:

[
Ĵ i
+, Ĵ

j
+

]
= iǫijkĴk

+,
[
Ĵ i
−, Ĵ

j
−

]
= iǫijkĴk

−, but
[
Ĵ i
+, Ĵ

j
−

]
= 0. (32)

By themselves, the 3 Ĵk
+ generate a symmetry group similar to rotations of a 3D space, but

since the Ĵk
+ are non-hermitian, the finite irreducible multiplets of this symmetry are non-

unitary analytic continuations (to complex “angles”) of the ordinary angular momentum

multiplets (j) of spin j = 0, 1
2
, 1, 3

2
, 2, . . .. Likewise, the finite irreducible multiplets of the

symmetry group generated by the Ĵk
− are analytic continuations of the spin-j multiplets of

angular momentum. Moreover, the two symmetry groups commute with each other, so the

finite irreducible multiplets of the net Lorentz symmetry are tensor products (j+) ⊗ (j−)

of the Ĵ+ and Ĵ− multiplets. In other words, distinct finite irreducible multiplets of the

Lorentz symmetry may be labeled by two integer or half-integer ‘spins’ j+ and j−, while

the states within such a multiplet are |j+, j−, m+, m−〉 for m+ = −j+, . . . ,+j+ and m− =

−j−, . . . ,+j−.

For the SO(3) group, the integer-j representations are single-valued but the half-integer-

j representations are double-valued, so to make all the representations single-valued we

promote the SO(3) group to its double cover Spin(3) ∼= SU(2). In the Spin(3) group,

rotations through angle 4π are trivial but rotations through angle 2π are not, and they are

represented by the −1 matrices in the half-integer-j representations. For the Lorentz group

we have a similar situation: the representations with integer j+ + j− are single-valued while

the representations with half-integer j++ j− are double-valued, and to make all of the single

valued we promote the SO+(3, 1) group to its double cover Spin(3, 1), which happens to be

isomorphic to SL(2,C), the group of complex 2 × 2 matrices with unit determinants (but

without any unitarity requirements).

The simplest non-trivial Lorentz — or rather Spin(3, 1) — representations are two in-

equivalent doublets, the left-handed Weyl spinor 2 and the right-handed Weyl spinor 2. (The
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Dirac spinor we shall study later this week is a reducible representation 4Dirac = 2+2.) The

2 representation has j+ = 1
2
and j− = 0, so Ĵ+ acts as 1

2
σσ while Ĵ− does not act at all.

Likewise, the 2 representations has j+ = 0 and j− = 1
2
, so this time the Ĵ− acts as 1

2
σσ while

the Ĵ+ does not act at all. In terms of the Ĵ and K̂ Lorentz generators, in the 2 representa-

tion Ĵ acts as 1
2
σσ and K̂ as − i

2
σσ, while in the 2 representation Ĵ acts as 1

2
σσ and K̂ as + i

2
σσ.

Consequently a 3D rotation R(φ,n) through angle φ around axis n is represented in both

representations as

M2(R) = M
2
(R) = exp

(
−
iφ

2
n · σσ

)
, (33)

while a Lorentz boost B of speed v in the direction n is represented by

M2(B) = exp
(
−
r

2
n · σσ

)
, M

2
(B) = exp

(
+
r

2
n · σσ

)
(34)

where r = artanh(v) is the rapidity of the boost. For successive boosts in the same direction,

the rapidities add up, r1+2 = r1 + r2. Consequently, a finite Lorentz boost of rapidity r in

the direction n is B = exp(rn · K̂), hence eqs. (34). The more familiar β and γ parameters

of a Lorentz boost are related to the rapidity as

β = tanh(r), γ = cosh(r), βγ = sinh(r). (35)

Note: all the 2 × 2 matrices (33) and (34) have unit determinants. And since any

continuous Lorentz symmetry is a product of a boost and a space rotation, it follows that

∀L ∈ SO+(3, 1) : det
(
M2(L)

)
= 1 and det

(
M

2
(L)

)
= 1. (36)

In SL(2,C) = Spin(3, 1) terms, we may identify the 2 representation with the fundamental

doublet of the SL(2,C) which transforms as ξ′α = Mα
βξ

β for M = M2(L) ∈ SL(2,C).

Consequently, the 2 representation becomes inequivalent to 2 but equivalent to its complex

conjugate 2∗ comprised of η′α̇ = M
β̇

α̇ η
β̇
for

M = M
2
(L) = σ2M

∗σ2 for any L and corresponding M = M2(L). (37)

Or if we raise the dotted 2 index of the η’s using the σ2 matrix, ηα̇ = σα̇γ̇2 ηγ̇ , then η′α̇ =

M∗α̇
β̇
ηβ̇.
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Next, consider the (j+ = j− = 1
2
) representation, which happens to be equivalent to the

Lorentz vector representation, V µ → V ′µ = Lµ
νV

ν . In the SL(2,C) terms, this (j+ = j− =

1
2
) representation is bi-spinor V α,β̇ which transforms as a product of 2 and 2 spinors,

V ′αγ̇ = Mα
βM

∗γ̇

δ̇
V βδ̇, (38)

or in the matrix language

V ′ = M × V ×M†. (39)

The map between the bi-spinors and the Lorentz vectors involves four hermitian 2×2 matrices

σµ = (1, σσ). Using the σµ, we may re-cast any Lorentz vector V µ as a matrix

V µ → V µσµ = V 0 + V · σσ (40)

an hence as a
(
1
2
, 1
2

)
bi-spinor

V αγ̇ =
(
V µσµ

)αγ̇
= V 0δαγ̇ + V · σσαγ̇ . (41)

Eq. (39) defines a linear transform of 2 × 2 matrices V → V ′, and since the four matrices

σµ form a complete basis of such 2 × 2 matrices, eq. (39) also defines a linear transform of

the corresponding Lorentz vectors, V ′µ = Lµ
ν(M)V ν . In your homework#6 you shall prove

that this transform is real (real V ′µ for real V µ), Lorentzian (preserves V ′
µV

′µ = VµV
µ),

orthochronous, and proper (det(L) = +1). And that what makes the the bi-spinor (j+ =

j− = 1
2
) representation of SL(2,C) equivalent to the vector representation of the Lorentz

group. Also, eqs. (39) and (40) provide us with a reverse map from the SL(2,C) group

acting on the Weyl spinors 2 and 2 back to the Lorentz group acting on vectors, tensors,

etc..

In general, any (j+, j−) multiplet of the SL(2,C) with integer net spin j++ j− is equiva-

lent to some kind of a Lorentz tensor. (Here, we include the scalar and the vector among the

tensors.) For example, the (1, 1) multiplet is equivalent to a symmetric, traceless 2–index

tensor T µν = +T νµ, T µ
µ = 0. But to save time, I leave the proof of this equivalence to your

homework#6.
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For j+ 6= j−, the (j+, j−) representation of the SL(2,C) is complex, so relating it

to a real Lorentz tensor is tricky. The trick here is to use two SL(2,C) multiplets with

opposite j+ and j−, which makes them complex conjugates of each other. Consequently,

combining this two conjugate multiplets together makes for a real multiplet, and it is this

real multiplet which is equivalent to a Lorentz Tensor. For example, the (j+ = 1, j− = 0)

and the (j+ = 0, j− = 1) representations are complex conjugates of each other, and together

the 6-member real representation (1, 0) + (0, 1) is equivalent to the antisymmetric 2–index

Lorentz tensor F µν = −F νµ. Again, proving this equivalence is a part of homework#6.
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