PARTIAL WAVE ANALYSIS OF SCATTERING

These are my notes from the Electromagnetic Theory (387 K) class. Here I discuss scattering of the scalar waves - such as wave-functions in quantum mechanics - as a prelude to scattering of the vector EM waves. In particular, in these notes I focus on the partial-wave analysis of scattering.

Consider scattering of a scalar wave $\psi(\mathbf{x})$ off some spherically symmetric obstacle. In quantum mechanics, this obstacle is usually a short-ranged central potential $V(r)$, although it can also be a reflective - or partially reflective - sphere with non-trivial boundary conditions. In any case, far away from the obstacle $\psi(\mathbf{x})$ obeys the free wave equation

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) \psi(\mathbf{x})=0, \tag{1}
\end{equation*}
$$

and we are looking for solutions of the form

$$
\begin{equation*}
\psi(\mathbf{x})=\psi_{\text {incident }}(\mathbf{x})+\psi_{\text {scattered }}(\mathbf{x}) \xrightarrow[r \rightarrow \infty]{ } \exp (i k z)+f(\theta) \frac{\exp (i k r)}{r} \tag{2}
\end{equation*}
$$

Note: by the spherical symmetry of the scattering object, the direction of the incident plane wave does not matter, so without loss of generality we make that direction the z axis. Likewise, the scattering amplitude $f(\mathbf{n})$ depends only on the angle between the incident wave and the direction \mathbf{n} of the scattering, thus in the spherical coordinates $f(\theta)$ rather than $f(\theta, \phi)$.

We also use the spherical symmetry to separate the variables of the wave equation in spherical coordinates, thus

$$
\begin{equation*}
\psi(r, \theta, \phi)=\sum_{\ell, m} C_{\ell, m} \sqrt{4 \pi(2 \ell+1)} Y_{\ell, m}(\theta, \phi) \times \psi_{\ell}(r) \tag{3}
\end{equation*}
$$

although thanks to the axial symmetry of the scattering solution (2) $C_{\ell, m}=0$ for $m \neq 0$.

As to the $m=0$ modes, $Y_{\ell, 0}(\theta, \phi)=\sqrt{(2 \ell+1) / 4 \pi} P_{\ell}(\cos \theta)$, thus

$$
\begin{equation*}
\psi(r, \theta)=\sum_{\ell=0}^{\infty} C_{\ell}(2 \ell+1) P_{\ell}(\cos \theta) \times \psi_{\ell}(r) \tag{4}
\end{equation*}
$$

where $P_{\ell}(x)$ are the Legendre polynomials. The radial functions $\psi_{\ell}(r)$ in the sum (4) obey the radial wave equations

$$
\begin{equation*}
\psi_{\ell}^{\prime \prime}(r)+\frac{2}{r} \psi_{\ell}^{\prime}(r)-\frac{\ell(\ell+1)}{r^{2}} \psi_{\ell}(r)+k^{2} \psi_{\ell}(r)=\binom{\text { perturbation by }}{\text { the scatterer }} \underset{r \rightarrow \infty}{\longrightarrow} 0 \tag{5}
\end{equation*}
$$

Consequently, outside the scatterer the radial waves become linear combinations of the spherical Bessel functions $j_{\ell}(k r)$ and $n_{\ell}(k r)$, and if the perturbation potential or boundary condition (on the surface of some reflecting sphere) are real, then we should have a real linear combination

$$
\begin{equation*}
\psi_{\ell}(r)=\cos \delta_{\ell} \times j_{\ell}(k r)-\sin \delta_{\ell} \times n_{\ell}(k r) \tag{6}
\end{equation*}
$$

for some angle δ_{ℓ} called the phase shift. The reason for this name is the asymptotic behavior of the radial solution at large r, - meaning both $r \gg R_{\text {scatterer }}$ and $k r \gg 1$. For $k r \gg 1$, the spherical Bessel functions asymptote to

$$
\begin{equation*}
j_{\ell}(k r) \xrightarrow[k r \gg 1]{ } \frac{\sin \left(k r-\ell \frac{\pi}{2}\right)}{k r}, \quad n_{\ell}(k r) \xrightarrow[k r \gg 1]{ }-\frac{\cos \left(k r-\ell \frac{\pi}{2}\right)}{k r}, \tag{7}
\end{equation*}
$$

hence for large radii

$$
\begin{equation*}
\psi_{\ell}(r) \underset{r \rightarrow \infty}{ } \cos \delta \frac{\sin \left(k r-\ell \frac{\pi}{2}\right)}{k r}+\sin \delta \frac{\cos \left(k r-\ell \frac{\pi}{2}\right)}{k r}=\frac{\sin \left(k r-\ell \frac{\pi}{2}+\delta_{\ell}\right)}{k r} \tag{8}
\end{equation*}
$$

In this formula, δ_{ℓ} shifts the phase of the asymptotic sine wave from the no-scattering asymptotic behavior

$$
\begin{align*}
\psi_{\ell}^{\text {free }}(r) & =j_{\ell}(k r) @ \text { all } r \quad\left\langle\left\langle\text { because } \psi_{\ell}^{\text {free }}(r) \text { should stay finite for } r \rightarrow 0\right\rangle\right\rangle \\
& \xrightarrow[k r \gg 1]{\longrightarrow} \frac{\sin \left(k r-\ell \frac{\pi}{2}\right)}{k r} \tag{9}
\end{align*}
$$

Next, let's assemble the partial waves for different ℓ 's into the sum

$$
\begin{align*}
\psi(r, \theta) & =\sum_{\ell=0}^{\infty} C_{\ell}(2 \ell+1) P_{\ell}(\cos \theta) \times \psi_{\ell}(r) \\
& =\sum_{\ell=0}^{\infty} C_{\ell}(2 \ell+1) P_{\ell}(\cos \theta) \times\left(\cos \delta_{\ell} \times j_{\ell}(k r)-\sin \delta_{\ell} \times n_{\ell}(k r)\right) \tag{10}
\end{align*}
$$

and choose the coefficients C_{ℓ} such that the net wave has asymptotic behavior (2) at large distances. The key to this choice is the following Lemma:

$$
\begin{equation*}
\int_{-1}^{+1} e^{i k r c} P_{\ell}(c) d c=2 i^{\ell} j_{\ell}(k r) \tag{11}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\psi_{\mathrm{inc}}=\exp (i k z)=\exp (i k r \cos \theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} P_{\ell}(\cos \theta) \times j_{\ell}(k r) \tag{12}
\end{equation*}
$$

At the same time, the scattered wave is purely divergent: its asymptotic behavior is

$$
\begin{equation*}
\psi_{\mathrm{sc}}(r, \theta)=\frac{f(\theta)}{r} \times e^{+i k r} \quad \text { without an } e^{-i k r} \text { term } \tag{13}
\end{equation*}
$$

so for each partial wave we should have

$$
\begin{equation*}
\psi_{\ell}^{\mathrm{sc}}(r) \underset{r \rightarrow \infty}{\longrightarrow} A_{\ell} \times \frac{e^{+i k r}}{r} \tag{14}
\end{equation*}
$$

for some overall complex coefficient A_{ℓ}, or in terms of the spherical Bessel functions

$$
\begin{equation*}
\psi_{\ell}^{\mathrm{sc}}(r)=A_{\ell} \times k i^{\ell+1} h_{\ell}(k r)=A_{\ell} k i^{\ell+1} \times\left(j_{\ell}(k r)+i n_{\ell}(k r)\right) \underset{k r \gg 1}{\longrightarrow} A_{\ell} \times \frac{e^{+i k r}}{r} \tag{15}
\end{equation*}
$$

Altogether, the scattered wave should have form

$$
\begin{equation*}
\psi_{\mathrm{sc}}(r, \theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} A_{\ell} P_{\ell}(\cos \theta) \times\left(i h_{\ell}(k r)=i j_{\ell}(k r)-n_{\ell}(k r)\right) \tag{16}
\end{equation*}
$$

hence adding the incident wave (12) we build

$$
\begin{equation*}
\psi^{\mathrm{net}}(r, \theta)=\sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} P_{\ell}(\cos \theta) \times\left(\left(1+i A_{\ell}\right) \times j_{\ell}(k r)-A_{\ell} \times n_{\ell}(k r)\right) \tag{17}
\end{equation*}
$$

Comparing this formula to eq. (10), we find the same general behavior provided

$$
\begin{equation*}
C_{\ell} \times \cos \delta_{\ell}=1+i A_{\ell} \quad \text { and } \quad C_{\ell} \times\left(-\sin \delta_{\ell}\right)=-A_{\ell} \tag{18}
\end{equation*}
$$

Solving these equations gives us

$$
\begin{equation*}
C_{\ell}=\exp \left(i \delta_{\ell}\right), \quad A_{\ell}=\sin \delta_{\ell} \times \exp \left(i \delta_{\ell}\right)=\frac{e^{2 i \delta_{\ell}}-1}{2 i} \tag{19}
\end{equation*}
$$

Coming back to the scattered wave, eq. (16) leads to

$$
\begin{align*}
\psi_{\mathrm{sc}}(r, \theta) & =\sum_{\ell=0}^{\infty}(2 \ell+1) A_{\ell} P_{\ell}(\cos \theta) \times i^{\ell} h_{\ell}(k r) \\
& \xrightarrow[k r \gg 1]{\longrightarrow} \sum_{\ell=0}^{\infty}(2 \ell+1) A_{\ell} P_{\ell}(\cos \theta) \times \frac{e^{+i k r}}{i k r} \tag{20}\\
& =\frac{e^{+i k r}}{k r} \times \sum_{\ell=0}^{\infty}(2 \ell+1) A_{\ell} P_{\ell}(\cos \theta) \\
& =f(\theta) \times \frac{e^{+i k r}}{r}
\end{align*}
$$

for the scattering amplitude

$$
\begin{equation*}
f(\theta)=\frac{1}{k} \sum_{\ell=0}^{\infty}(2 \ell+1) A_{\ell} P_{\ell}(\cos \theta) . \tag{21}
\end{equation*}
$$

The coefficients A_{ℓ} here should be as in eq. (19), thus

$$
\begin{equation*}
f(\theta)=\sum_{\ell=0}^{\infty} \frac{e^{2 i \delta_{\ell}}-1}{2 i k} \times(2 \ell+1) P_{\ell}(\cos \theta) . \tag{22}
\end{equation*}
$$

The partial scattering cross-section follows from the amplitude (22) as

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=|f(\theta)|^{2} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
|f(\theta)|^{2}=\sum_{\ell, \ell^{\prime}} \frac{\left(\exp \left(+2 i \delta_{\ell}\right)-1\right)\left(\exp \left(-2 i \delta_{\ell^{\prime}}\right)-1\right)}{4 k^{2}} \times(2 \ell+1)\left(2 \ell^{\prime}+1\right) P_{\ell}(\cos \theta) P_{\ell^{\prime}}(\cos \theta) . \tag{24}
\end{equation*}
$$

Consequently, integrating this partial cross-section over the 4π directions to obtain the total cross-section, we obtain

$$
\begin{align*}
\sigma_{\mathrm{tot}}= & \oiint d^{2} \Omega|f|^{2} \\
= & \int_{0}^{\pi}|f|^{2} \times 2 \pi \sin \theta d \theta \\
= & \sum_{\ell, \ell^{\prime}} \frac{\left(\exp \left(+2 i \delta_{\ell}\right)-1\right)\left(\exp \left(-2 i \delta_{\ell^{\prime}}\right)-1\right)}{4 k^{2}} \times \tag{25}\\
& \quad \times(2 \ell+1)\left(2 \ell^{\prime}+1\right) \int_{0}^{\pi} P_{\ell}(\cos \theta) P_{\ell^{\prime}}(\cos \theta) 2 \pi \sin \theta d \theta
\end{align*}
$$

On the last line here

$$
\begin{equation*}
\int_{0}^{\pi} P_{\ell}(\cos \theta) P_{\ell^{\prime}}(\cos \theta) 2 \pi \sin \theta d \theta=2 \pi \int_{-1}^{+1} P_{\ell}(\cos \theta) P_{\ell^{\prime}}(\cos \theta) d \cos \theta=\frac{4 \pi}{2 \ell+1} \times \delta_{\ell, \ell^{\prime}} \tag{26}
\end{equation*}
$$

hence

$$
\begin{align*}
\sigma_{\mathrm{tot}} & =\sum_{\ell}\left|\frac{\exp \left(2 i \delta_{\ell}\right)-1}{2 k}\right|^{2} \times 4 \pi(2 \ell+1) \\
& =\frac{4 \pi}{k^{2}} \sum_{\ell=0}^{\infty}(2 \ell+1) \sin ^{2}\left(\delta_{\ell}\right) \tag{27}
\end{align*}
$$

Scattering off a Hard Sphere

A hard sphere is a spherical surface which cannot be penetrated by a particle or a wave. In quantum mechanics, its implemented by the infinite-wall potential

$$
V(r)= \begin{cases}0 & \text { for } r>R \tag{28}\\ +\infty & \text { for } r<R\end{cases}
$$

Consequently, the wave-function $\psi(r, \theta, \phi)$ obeys the un-perturbed wave equation outside the sphere,

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) \psi(r, \theta, \phi)=0 \quad \text { for } r>R \tag{29}
\end{equation*}
$$

but also the Dirichlet boundary conditions on the sphere's surface

$$
\begin{equation*}
\psi(r, \theta, \phi)=0 \quad \text { for } r=R \text { and any } \theta, \phi \tag{30}
\end{equation*}
$$

Separating the variables in the spherical coordinates, we see that outside the sphere we have the usual

$$
\begin{equation*}
\psi(r, \theta)=\sum_{\ell} C_{\ell}(2 \ell+1) P_{\ell}(\cos \theta) \times \psi_{\ell}(r) \tag{31}
\end{equation*}
$$

where the radial ψ_{ℓ} are solutions of the free radial wave equations and hence linear combinations of the spherical Bessel functions. Specifically,

$$
\begin{equation*}
\psi_{\ell}(r)=\cos \delta_{\ell} \times j_{\ell}(k r)-\sin \delta_{\ell} \times n_{\ell}(k r) \tag{32}
\end{equation*}
$$

for some phase shift δ_{ℓ}, which obtains from the Dirichlet boundary condition

$$
\begin{equation*}
\psi_{\ell}(r=R)=0 \tag{33}
\end{equation*}
$$

hence

$$
\begin{equation*}
\tan \delta_{\ell}=\frac{j_{\ell}(k R)}{n_{\ell}(k R)} \tag{34}
\end{equation*}
$$

Alas, this formula is not particularly transparent, so let us explore the two limiting cases: a small sphere of radius $R \ll(1 / k)$, and a large sphere of radius $R \gg(1 / k)$.

Small Sphere Limit

Let's start with a hard sphere of a small radius, $k R \ll 1$. In this limit,

$$
\begin{equation*}
j_{\ell}(k R) \approx \frac{(k R)^{\ell}}{(2 \ell-1)!!}, \quad n_{\ell}(k R) \approx-\frac{(2 \ell+1)!!}{(k R)^{\ell+1}} \tag{35}
\end{equation*}
$$

so eq. (34) for the phase shifts yields

$$
\begin{equation*}
\tan \delta_{\ell}=-\frac{(k R)^{2 \ell+1}}{(2 \ell-1)!!(2 \ell+1)!!} . \tag{36}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\tan \delta_{0} \approx-(k R), \quad \tan \delta_{1} \approx-\frac{(k R)^{3}}{3} \quad \tan \delta_{2} \approx-\frac{(k R)^{5}}{45}, \ldots \tag{37}
\end{equation*}
$$

Note that for $k R \ll 1$ all the phase shifts are negative and small, and their magnitudes rapidly decrease with ℓ. Thus, to the leading order in ($k R$) we may approximate

$$
\begin{equation*}
\delta_{0} \approx-k R, \quad \text { other } \delta_{\ell} \approx 0 \tag{39}
\end{equation*}
$$

In this approximation, the scattering amplitude becomes

$$
\begin{equation*}
f(\theta) \approx \frac{e^{2 i \delta_{0}}-1}{2 k} \times P_{0}(\cos \theta)+0 \approx \frac{2 i \delta_{0}}{2 k} \times 1 \approx-i R, \tag{40}
\end{equation*}
$$

hence isotropic scattering cross-section

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=|f|^{2} \approx R^{2} \quad \text { in all directions } \tag{41}
\end{equation*}
$$

and the total scattering cross-section is

$$
\begin{equation*}
\sigma_{\mathrm{tot}}=4 \pi R^{2} . \tag{42}
\end{equation*}
$$

Note: this total scattering cross-sections is 4 times larger than the geometric cross-section $\sigma_{\text {geom }}=\pi R^{2}$ of the sphere in question. However, this discrepancy does not raise a paradox since one should not expect the geometric optics to work around objects of size $R \ll \lambda$.

Large Sphere Limit

Now consider the opposite limit of the hard sphere having a large radius $R \gg \lambda$, hence $k R \gg 1$. In this limit, the scattering is not dominated by a single mode $\ell=0$; instead, it gets noticeable contributions from great many modes, from $\ell=0$ to $\ell \sim k R \gg 1$. To see how this works, we see that for spherical Bessel functions with large $\ell \gg 1$, the transition between the short-distance regime

$$
\begin{equation*}
j_{\ell}(x) \approx \frac{x^{\ell}}{(2 \ell-1)!!}, \quad n_{\ell}(x) \approx-\frac{(2 \ell+1)!!}{x^{\ell+1}}, \tag{35}
\end{equation*}
$$

and the long-distance regime

$$
\begin{equation*}
j_{\ell}(x) \approx \frac{\sin \left(x-\ell \frac{\pi}{2}\right)}{x}, \quad n_{\ell}(x) \approx-\frac{\cos \left(x-\ell \frac{\pi}{2}\right)}{x} \tag{43}
\end{equation*}
$$

happens at $x \approx(\ell+1)$ rather than $x \approx 1$. Consequently, for a given $k R \gg 1$, the phase shifts of the very-large- ℓ modes with $\ell>k R$ obtain from the short-distance approximation to the Bessel functions despite $k R \gg 1$. Specifically, for these very-large- ℓ modes

$$
\begin{equation*}
\tan \delta_{\ell}=\frac{j_{\ell}(k R)}{n_{\ell}(k R)} \approx-\frac{(k R)^{2 \ell+1}}{(2 \ell+1)!!(2 \ell-1)!!} \ll 1 \quad \text { for } \ell>k R, \tag{44}
\end{equation*}
$$

so we may approximate

$$
\begin{equation*}
\delta_{\ell} \approx 0 \text { for } \ell>k R \tag{45}
\end{equation*}
$$

On the other hand, for modes with $\ell \ll k R$ we have

$$
\begin{equation*}
\tan \delta_{\ell} \approx-\tan \left(k R-\ell \frac{\pi}{2}\right) \tag{46}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\delta_{\ell}=\frac{\ell \pi}{2}-k R \tag{47}
\end{equation*}
$$

Actually, this approximation is good for $\ell \ll k R$ but becomes rather crude for $\ell=O(k R)$ (but $\ell<k R$). In this case, a better approximation - based on the WKB approximation to
the spherical Bessel functions - yields

$$
\begin{align*}
\delta_{\ell} & \approx-\frac{\pi}{4}-\int_{\left(\ell+\frac{1}{2}\right)}^{R} d r \sqrt{k^{2}-\frac{\left(\ell+\frac{1}{2}\right)^{2}}{r^{2}}} \tag{48}\\
& =-\frac{\pi}{4}-\sqrt{(k R)^{2}-\left(\ell+\frac{1}{2}\right)^{2}}+\left(\ell+\frac{1}{2}\right) \arccos \frac{\left(\ell+\frac{1}{2}\right)}{k R} .
\end{align*}
$$

But fortunately, we do not need the gory details of this formula. All we need to know is that for $\ell \leq k R$, the phase shifts δ_{ℓ} are large and change by a sizable fraction of π between adjacent values of ℓ. Consequently, $\sin ^{2} \delta_{\ell}$ as a function of ℓ jumps almost randomly between 0 and 1 , and when we average its value over some range of ℓ, we end up with

$$
\begin{equation*}
\left\langle\sin ^{2} \delta_{\ell}\right\rangle_{\mathrm{avg}}=\frac{1}{2} \quad(\text { for } \ell \leq k R) \tag{49}
\end{equation*}
$$

Consequently, the total scattering cross-section is

$$
\begin{aligned}
\sigma_{\text {tot }} & =\frac{4 \pi}{k^{2}} \sum_{\ell=0}^{\infty}(2 \ell+1) \sin ^{2} \delta_{\ell} \\
& \approx \frac{4 \pi}{k^{2}} \times \sum_{\ell=0}^{k R}(2 \ell+1) \times\left(\left\langle\sin ^{2} \delta_{\ell}\right\rangle=\frac{1}{2}\right) \\
& =\frac{2 \pi}{k^{2}} \times \sum_{\ell=0}^{k R}(2 \ell+1) \\
& \approx \frac{2 \pi}{k^{2}} \times(k R)^{2} \\
& =2 \pi R^{2} .
\end{aligned}
$$

Thus, the total scattering cross-section off a large hard sphere is twice the sphere's geometric cross-section, $\sigma_{\text {tot }}=2 \sigma_{\text {geom }}$.

For a large sphere of radius $R \gg \lambda$, we expect the geometric optics to be a good approximation to the wave optics. Geometrically, relating the scattering angle to the impact
parameter $b=R \cos (\theta / 2)$, we obtain the partial scattering cross-section as

$$
\begin{equation*}
\frac{d \sigma_{\text {geom }}}{d \Omega}=\frac{1}{2 \pi} \frac{d\left(\pi b^{2}\right)}{d \cos \theta}=\frac{R^{2}}{4} \tag{50}
\end{equation*}
$$

thus isotropic scattering with the total cross-section $\sigma_{\text {geom }}=\pi R^{2}$. In the wave optics, calculating the partial cross-section is a lot harder than the total cross-section, so let me simply give you the summary: For most angles,

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=|f(\theta)|^{2} \approx \frac{R^{2}}{4} \tag{51}
\end{equation*}
$$

exactly as in the geometric optics. However, eq. (51) breaks down at small angles $\theta \lesssim(1 / k R)$, where the cross-section has a narrow but very high forward peak due to diffraction of the wave around the sphere. The net cross-section over this forward peak is πR^{2}, same as the net cross-section over larger angles outside the forward peak, and that's why the total cross-section is $\sigma_{\mathrm{tot}}=2 \times \pi R^{2}$.

