
PARTIAL WAVE ANALYSIS OF SCATTERING

These are my notes from the Electromagnetic Theory (387 K) class. Here I discuss

scattering of the scalar waves — such as wave-functions in quantum mechanics — as a

prelude to scattering of the vector EM waves. In particular, in these notes I focus on the

partial-wave analysis of scattering.

⋆ ⋆ ⋆

Consider scattering of a scalar wave ψ(x) off some spherically symmetric obstacle. In

quantum mechanics, this obstacle is usually a short-ranged central potential V (r), although

it can also be a reflective — or partially reflective — sphere with non-trivial boundary

conditions. In any case, far away from the obstacle ψ(x) obeys the free wave equation

(

∇2 + k2
)

ψ(x) = 0, (1)

and we are looking for solutions of the form

ψ(x) = ψincident(x) + ψscattered(x) −−−→
r→∞

exp(ikz) + f(θ)
exp(ikr)

r
. (2)

Note: by the spherical symmetry of the scattering object, the direction of the incident

plane wave does not matter, so without loss of generality we make that direction the z axis.

Likewise, the scattering amplitude f(n) depends only on the angle between the incident

wave and the direction n of the scattering, thus in the spherical coordinates f(θ) rather than

f(θ, φ).

We also use the spherical symmetry to separate the variables of the wave equation in

spherical coordinates, thus

ψ(r, θ, φ) =
∑

ℓ,m

Cℓ,m

√

4π(2ℓ+ 1)Yℓ,m(θ, φ)× ψℓ(r), (3)

although thanks to the axial symmetry of the scattering solution (2) Cℓ,m = 0 for m 6= 0.
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As to the m = 0 modes, Yℓ,0(θ, φ) =
√

(2ℓ+ 1)/4π Pℓ(cos θ), thus

ψ(r, θ) =

∞
∑

ℓ=0

Cℓ(2ℓ+ 1)Pℓ(cos θ)× ψℓ(r) (4)

where Pℓ(x) are the Legendre polynomials. The radial functions ψℓ(r) in the sum (4) obey

the radial wave equations

ψ′′

ℓ (r) +
2

r
ψ′

ℓ(r) −
ℓ(ℓ+ 1)

r2
ψℓ(r) + k2ψℓ(r) =

(

perturbation by

the scatterer

)

−−−→
r→∞

0. (5)

Consequently, outside the scatterer the radial waves become linear combinations of the spher-

ical Bessel functions jℓ(kr) and nℓ(kr), and if the perturbation potential or boundary con-

dition (on the surface of some reflecting sphere) are real, then we should have a real linear

combination

ψℓ(r) = cos δℓ × jℓ(kr) − sin δℓ × nℓ(kr) (6)

for some angle δℓ called the phase shift. The reason for this name is the asymptotic behavior

of the radial solution at large r, — meaning both r ≫ Rscatterer and kr ≫ 1. For kr ≫ 1,

the spherical Bessel functions asymptote to

jℓ(kr) −−−→
kr≫1

sin
(

kr − ℓπ2 )

kr
, nℓ(kr) −−−→

kr≫1
−
cos

(

kr − ℓπ2 )

kr
, (7)

hence for large radii

ψℓ(r) −−−→
r→∞

cos δ
sin

(

kr − ℓπ2 )

kr
+ sin δ

cos
(

kr − ℓπ2 )

kr
=

sin
(

kr − ℓπ2 + δℓ
)

kr
. (8)

In this formula, δℓ shifts the phase of the asymptotic sine wave from the no-scattering

asymptotic behavior

ψfree
ℓ (r) = jℓ(kr) @ all r 〈〈 because ψfree

ℓ (r) should stay finite for r → 0 〉〉

−−−→
kr≫1

sin
(

kr − ℓπ2 )

kr
.

(9)

2



Next, let’s assemble the partial waves for different ℓ’s into the sum

ψ(r, θ) =
∞
∑

ℓ=0

Cℓ(2ℓ+ 1)Pℓ(cos θ)× ψℓ(r)

=
∞
∑

ℓ=0

Cℓ(2ℓ+ 1)Pℓ(cos θ)×
(

cos δℓ × jℓ(kr) − sin δℓ × nℓ(kr)
)

(10)

and choose the coefficients Cℓ such that the net wave has asymptotic behavior (2) at large

distances. The key to this choice is the following Lemma:

+1
∫

−1

eikrc Pℓ(c) dc = 2iℓjℓ(kr) (11)

and hence

ψinc = exp(ikz) = exp(ikr cos θ) =

∞
∑

ℓ=0

(2ℓ+ 1)iℓPℓ(cos θ)× jℓ(kr). (12)

At the same time, the scattered wave is purely divergent: its asymptotic behavior is

ψsc(r, θ) =
f(θ)

r
× e+ikr without an e−ikr term, (13)

so for each partial wave we should have

ψsc
ℓ (r) −−−→

r→∞
Aℓ ×

e+ikr

r
(14)

for some overall complex coefficient Aℓ, or in terms of the spherical Bessel functions

ψsc
ℓ (r) = Aℓ × kiℓ+1hℓ(kr) = Aℓki

ℓ+1 ×
(

jℓ(kr) + inℓ(kr)
)

−−−→
kr≫1

Aℓ ×
e+ikr

r
. (15)

Altogether, the scattered wave should have form

ψsc(r, θ) =

∞
∑

ℓ=0

(2ℓ+ 1)iℓAℓPℓ(cos θ)×
(

ihℓ(kr) = ijℓ(kr) − nℓ(kr)
)

, (16)
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hence adding the incident wave (12) we build

ψnet(r, θ) =
∞
∑

ℓ=0

(2ℓ+ 1)iℓPℓ(cos θ)×
(

(1 + iAℓ)× jℓ(kr) − Aℓ × nℓ(kr)
)

. (17)

Comparing this formula to eq. (10), we find the same general behavior provided

Cℓ × cos δℓ = 1 + iAℓ and Cℓ × (− sin δℓ) = −Aℓ . (18)

Solving these equations gives us

Cℓ = exp(iδℓ), Aℓ = sin δℓ × exp(iδℓ) =
e2iδℓ − 1

2i
. (19)

Coming back to the scattered wave, eq. (16) leads to

ψsc(r, θ) =
∞
∑

ℓ=0

(2ℓ+ 1)AℓPℓ(cos θ)× iℓhℓ(kr)

−−−→
kr≫1

∞
∑

ℓ=0

(2ℓ+ 1)AℓPℓ(cos θ)×
e+ikr

ikr

=
e+ikr

kr
×

∞
∑

ℓ=0

(2ℓ+ 1)AℓPℓ(cos θ)

= f(θ)×
e+ikr

r

(20)

for the scattering amplitude

f(θ) =
1

k

∞
∑

ℓ=0

(2ℓ+ 1)AℓPℓ(cos θ) . (21)

The coefficients Aℓ here should be as in eq. (19), thus

f(θ) =

∞
∑

ℓ=0

e2iδℓ − 1

2ik
× (2ℓ+ 1)Pℓ(cos θ). (22)
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The partial scattering cross-section follows from the amplitude (22) as

dσ

dΩ
= |f(θ)|2 , (23)

where

|f(θ)|2 =
∑

ℓ,ℓ′

(exp(+2iδℓ)− 1)(exp(−2iδℓ′)− 1)

4k2
× (2ℓ+1)(2ℓ′+1)Pℓ(cos θ)Pℓ′(cos θ). (24)

Consequently, integrating this partial cross-section over the 4π directions to obtain the total

cross-section, we obtain

σtot =

∫∫

d2Ω |f |2

=

π
∫

0

|f |2 × 2π sin θ dθ

=
∑

ℓ,ℓ′

(exp(+2iδℓ)− 1)(exp(−2iδℓ′)− 1)

4k2
×

× (2ℓ+ 1)(2ℓ′ + 1)

π
∫

0

Pℓ(cos θ)Pℓ′(cos θ) 2π sin θ dθ

(25)

On the last line here

π
∫

0

Pℓ(cos θ)Pℓ′(cos θ) 2π sin θ dθ = 2π

+1
∫

−1

Pℓ(cos θ)Pℓ′(cos θ) d cos θ =
4π

2ℓ+ 1
× δℓ,ℓ′ , (26)

hence

σtot =
∑

ℓ

∣

∣

∣

∣

exp(2iδℓ)− 1

2k

∣

∣

∣

∣

2

× 4π(2ℓ+ 1)

=
4π

k2

∞
∑

ℓ=0

(2ℓ+ 1) sin2(δℓ).

(27)
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Scattering off a Hard Sphere

A hard sphere is a spherical surface which cannot be penetrated by a particle or a wave.

In quantum mechanics, its implemented by the infinite-wall potential

V (r) =

{

0 for r > R,

+∞ for r < R.
(28)

Consequently, the wave-function ψ(r, θ, φ) obeys the un-perturbed wave equation outside the

sphere,

(∇2 + k2)ψ(r, θ, φ) = 0 for r > R, (29)

but also the Dirichlet boundary conditions on the sphere’s surface

ψ(r, θ, φ) = 0 for r = R and any θ, φ. (30)

Separating the variables in the spherical coordinates, we see that outside the sphere we

have the usual

ψ(r, θ) =
∑

ℓ

Cℓ(2ℓ+ 1)Pℓ(cos θ)× ψℓ(r) (31)

where the radial ψℓ are solutions of the free radial wave equations and hence linear combi-

nations of the spherical Bessel functions. Specifically,

ψℓ(r) = cos δℓ × jℓ(kr) − sin δℓ × nℓ(kr) (32)

for some phase shift δℓ, which obtains from the Dirichlet boundary condition

ψℓ(r = R) = 0, (33)

hence

tan δℓ =
jℓ(kR)

nℓ(kR)
. (34)

Alas, this formula is not particularly transparent, so let us explore the two limiting cases: a

small sphere of radius R≪ (1/k), and a large sphere of radius R ≫ (1/k).
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Small Sphere Limit

Let’s start with a hard sphere of a small radius, kR ≪ 1. In this limit,

jℓ(kR) ≈
(kR)ℓ

(2ℓ− 1)!!
, nℓ(kR) ≈ −

(2ℓ+ 1)!!

(kR)ℓ+1
, (35)

so eq. (34) for the phase shifts yields

tan δℓ = −
(kR)2ℓ+1

(2ℓ− 1)!! (2ℓ+ 1)!!
. (36)

In particular,

tan δ0 ≈ −(kR), tan δ1 ≈ −
(kR)3

3
tan δ2 ≈ −

(kR)5

45
, . . . . (37)(38)

Note that for kR ≪ 1 all the phase shifts are negative and small, and their magnitudes

rapidly decrease with ℓ. Thus, to the leading order in (kR) we may approximate

δ0 ≈ −kR, other δℓ ≈ 0. (39)

In this approximation, the scattering amplitude becomes

f(θ) ≈
e2iδ0 − 1

2k
× P0(cos θ) + 0 ≈

2iδ0
2k

× 1 ≈ −iR, (40)

hence isotropic scattering cross-section

dσ

dΩ
= |f |2 ≈ R2 in all directions, (41)

and the total scattering cross-section is

σtot = 4πR2. (42)

Note: this total scattering cross-sections is 4 times larger than the geometric cross-section

σgeom = πR2 of the sphere in question. However, this discrepancy does not raise a paradox

since one should not expect the geometric optics to work around objects of size R ≪ λ.
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Large Sphere Limit

Now consider the opposite limit of the hard sphere having a large radius R ≫ λ, hence

kR ≫ 1. In this limit, the scattering is not dominated by a single mode ℓ = 0; instead, it

gets noticeable contributions from great many modes, from ℓ = 0 to ℓ ∼ kR ≫ 1. To see

how this works, we see that for spherical Bessel functions with large ℓ ≫ 1, the transition

between the short-distance regime

jℓ(x) ≈
xℓ

(2ℓ− 1)!!
, nℓ(x) ≈ −

(2ℓ+ 1)!!

xℓ+1
, (35)

and the long-distance regime

jℓ(x) ≈
sin(x− ℓπ2 )

x
, nℓ(x) ≈ −

cos(x− ℓπ2 )

x
, (43)

happens at x ≈ (ℓ + 1) rather than x ≈ 1. Consequently, for a given kR ≫ 1, the phase

shifts of the very-large-ℓ modes with ℓ > kR obtain from the short-distance approximation

to the Bessel functions despite kR ≫ 1. Specifically, for these very-large-ℓ modes

tan δℓ =
jℓ(kR)

nℓ(kR)
≈ −

(kR)2ℓ+1

(2ℓ+ 1)!!(2ℓ− 1)!!
≪ 1 for ℓ > kR, (44)

so we may approximate

δℓ ≈ 0 for ℓ > kR. (45)

On the other hand, for modes with ℓ≪ kR we have

tan δℓ ≈ − tan(kR− ℓπ2 ) (46)

and hence

δℓ =
ℓπ

2
− kR. (47)

Actually, this approximation is good for ℓ ≪ kR but becomes rather crude for ℓ = O(kR)

(but ℓ < kR). In this case, a better approximation — based on the WKB approximation to
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the spherical Bessel functions — yields

δℓ ≈ −
π

4
−

R
∫

(ℓ+ 1

2
)

dr

√

k2 −
(ℓ+ 1

2)
2

r2

= −
π

4
−

√

(kR)2 − (ℓ+ 1
2)

2 + (ℓ+ 1
2) arccos

(ℓ+ 1
2)

kR
.

(48)

But fortunately, we do not need the gory details of this formula. All we need to know is

that for ℓ ≤ kR, the phase shifts δℓ are large and change by a sizable fraction of π between

adjacent values of ℓ. Consequently, sin2 δℓ as a function of ℓ jumps almost randomly between

0 and 1, and when we average its value over some range of ℓ, we end up with

〈

sin2 δℓ
〉

avg
=

1

2
(for ℓ ≤ kR). (49)

Consequently, the total scattering cross-section is

σtot =
4π

k2

∞
∑

ℓ=0

(2ℓ+ 1) sin2 δℓ

≈
4π

k2
×

kR
∑

ℓ=0

(2ℓ+ 1)×

(

〈

sin2 δℓ
〉

=
1

2

)

=
2π

k2
×

kR
∑

ℓ=0

(2ℓ+ 1)

≈
2π

k2
× (kR)2

= 2πR2.

Thus, the total scattering cross-section off a large hard sphere is twice the sphere’s geometric

cross-section, σtot = 2σgeom.

For a large sphere of radius R ≫ λ, we expect the geometric optics to be a good

approximation to the wave optics. Geometrically, relating the scattering angle to the impact
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parameter b = R cos(θ/2), we obtain the partial scattering cross-section as

dσgeom
dΩ

=
1

2π

d(πb2)

d cos θ
=

R2

4
(50)

thus isotropic scattering with the total cross-section σgeom = πR2. In the wave optics,

calculating the partial cross-section is a lot harder than the total cross-section, so let me

simply give you the summary: For most angles,

dσ

dΩ
= |f(θ)|2 ≈

R2

4
, (51)

exactly as in the geometric optics. However, eq. (51) breaks down at small angles θ <∼ (1/kR),

where the cross-section has a narrow but very high forward peak due to diffraction of the

wave around the sphere. The net cross-section over this forward peak is πR2, same as

the net cross-section over larger angles outside the forward peak, and that’s why the total

cross-section is σtot = 2× πR2.
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