PARTIAL WAVE ANALYSIS OF SCATTERING

These are my notes from the Electromagnetic Theory (387 K) class. Here I discuss
scattering of the scalar waves — such as wave-functions in quantum mechanics — as a
prelude to scattering of the vector EM waves. In particular, in these notes I focus on the

partial-wave analysis of scattering.

Consider scattering of a scalar wave 1(x) off some spherically symmetric obstacle. In
quantum mechanics, this obstacle is usually a short-ranged central potential V'(r), although
it can also be a reflective — or partially reflective — sphere with non-trivial boundary

conditions. In any case, far away from the obstacle 1)(x) obeys the free wave equation
(V> + k) o(x) = 0, (1)

and we are looking for solutions of the form

exp(ikr)

77Z)(X) = @bincident(x) + wscattered(x) m exp(ik:z) + f(@) (2)

Note: by the spherical symmetry of the scattering object, the direction of the incident
plane wave does not matter, so without loss of generality we make that direction the z axis.
Likewise, the scattering amplitude f(n) depends only on the angle between the incident

wave and the direction n of the scattering, thus in the spherical coordinates f(6) rather than
f(8,9).

We also use the spherical symmetry to separate the variables of the wave equation in

spherical coordinates, thus
U(r,0,6) = Com\/Am(20 + 1)Yym (6, ) x vy(r), (3)
£m

although thanks to the axial symmetry of the scattering solution (2) Cy,, = 0 for m # 0.



As to the m = 0 modes, Y, o(0, ¢) = \/(2¢ + 1) /47 Py(cos #), thus

o0

U(r,0) = Ci(20 + 1) Py(cos 0) x thy(r) (4)

=0

where Py(x) are the Legendre polynomials. The radial functions v;(r) in the sum (4) obey

the radial wave equations
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Consequently, outside the scatterer the radial waves become linear combinations of the spher-
ical Bessel functions jy(kr) and ng(kr), and if the perturbation potential or boundary con-
dition (on the surface of some reflecting sphere) are real, then we should have a real linear

combination
Ye(r) = cosdp x je(kr) — sindy x ng(kr) (6)
for some angle o, called the phase shift. The reason for this name is the asymptotic behavior

of the radial solution at large r, — meaning both r > Rgcatterer and kr > 1. For kr > 1,

the spherical Bessel functions asymptote to

sin (kr — (%)
kr>1 kr

cos(kr — (%)
k y — 2
, ng(kr) p— o ) (7)

Je(kr)
hence for large radii

in(kr — (5 kr — (% in(kr — 45 +46
Ye(r) —— cosé—sm( - 2) + sinécos( - ) = Sm( : 2 T E)- (8)
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In this formula, &, shifts the phase of the asymptotic sine wave from the no-scattering

asymptotic behavior

wgree (r) = jo(kr) @ all r {( because ¢£ree(r) should stay finite for r — 0))
sin(kr — (%) (9)
kr>1 kr .




Next, let’s assemble the partial waves for different ¢’s into the sum

oo

Y(r,0) =Y Cp(20+ 1) Py(cos B) x thy(r)

=0
00

= ZCE(%Jr 1)Py(cos @) x (00554 X jo(kr) — sindy x ng(k:r)>
=0

(10)

and choose the coefficients Cy such that the net wave has asymptotic behavior (2) at large

distances. The key to this choice is the following Lemma:

+1

/eim Py(c)de = 2i%5,(kr)

-1

and hence

[e e}
Yine = exp(ikz) = exp(ikrcos) Z (20+1) L]Pe (cosB) x je(kr).
=0

At the same time, the scattered wave is purely divergent: its asymptotic behavior is

0 . .
& x etikr without an e " term,
”

Pse (Tu ‘9) =

so for each partial wave we should have

e+ik‘r

Yo (r) —= Ay x

for some overall complex coefficient Ay, or in terms of the spherical Bessel functions

+ikr

VE(r) = Apx ki he(kr) = Agki®™ x (jo(kr) + ing(kr)) — Arx
>

Altogether, the scattered wave should have form

s (1, 0) Z 20+ 1) eAng(COS@) (z’hg(k‘r) = ijy(kr) — ng(k:r)),
=0

(11)

(13)

(14)

(15)

(16)



hence adding the incident wave (12) we build

P (r, 0) Z (20 4+ 1)i* Py(cos 0) x ((1 +iAp) x Je(kr) — Ap x ng(k;'r’)>.
=0

Comparing this formula to eq. (10), we find the same general behavior provided

Cyxcosdy = 1 4+ iAy and Cyp x (—sindy) = —Ay.

Solving these equations gives us

621& -1

Cy = exp(idy), Ay = sindy X exp(idy) = 2

Coming back to the scattered wave, eq. (16) leads to

o0
se(r, 0) Z (20 4 1)AgPy(cos 0) x i hy(kr)
(=0

+ikr
ikr
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= f(0
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for the scattering amplitude
1

o
=7 Z 20+ 1)ApPy(cos ) .
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The coefficients Ay here should be as in eq. (19), thus

e2i§g -1

£0) => s % (204 1)Pi(cos).
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The partial scattering cross-section follows from the amplitude (22) as

@ = s, (23)

where

Fo)F = 3 el - 14)/5§XP<_2M£/) =Y o (204+1)(20 + 1) Py(cos ) Py (cos ). (24)
L

Consequently, integrating this partial cross-section over the 47 directions to obtain the total

cross-section, we obtain

Otot = #dQQ |f|2

- /\f|2 X 27 sin 0 df
¥ (exp(+2i6¢) — 1) (exp(=2idp) — 1) (25)
B 4k?
00
X (20+1)(2¢ + 1) /Pg(cos 0) Py (cos 0) 2 sin 0 db
0
On the last line here
T +1 4
/Pg(COS 0)Py(cos ) 2rsinfdf = 2x /Pg(COS 0) Py (cos ) dcos = %i T X Ser,  (26)
0 -1
hence
B exp(2idy) — 1 2
Ttot = ; S YR Am(20+ 1)
(27)

AT =
= —22 (20 4 1) sin®(5y).
=0



Scattering off a Hard Sphere

A hard sphere is a spherical surface which cannot be penetrated by a particle or a wave.

In quantum mechanics, its implemented by the infinite-wall potential

Vir) = {0 forr > R, (25)

400 forr < R.

Consequently, the wave-function v (r, 6, ¢) obeys the un-perturbed wave equation outside the

sphere,

(V2 + E2)p(r,0,¢) = 0 forr > R, (29)

but also the Dirichlet boundary conditions on the sphere’s surface

W(r,0,6) = 0 forr = R and any 6, ¢. (30)

Separating the variables in the spherical coordinates, we see that outside the sphere we

have the usual

Y(r,0) =Y Cy(20+ 1)Py(cos§) x y(r) (31)
l

where the radial 1), are solutions of the free radial wave equations and hence linear combi-

nations of the spherical Bessel functions. Specifically,
Ye(r) = cosdy x je(kr) — sindy x ng(kr) (32)

for some phase shift §;, which obtains from the Dirichlet boundary condition

Yo(r=R) = 0, (33)
hence
~ Je(kR)
tand, = (kR (34)

Alas, this formula is not particularly transparent, so let us explore the two limiting cases: a

small sphere of radius R < (1/k), and a large sphere of radius R > (1/k).



SMALL SPHERE LIMIT
Let’s start with a hard sphere of a small radius, kR < 1. In this limit,

(kR)* 20+ 1)

Je(kR) =~ r—nn’ ng(kR) ~ T RR)T (35)
so eq. (34) for the phase shifts yields
B (kR>2€+1
tande = ~ @i - (36)
In particular,
kR)3 kR)®
tandg ~ —(kR), tand; ~ ! 3) tanda ~ ! 4]? Y (37)(38)

Note that for kR < 1 all the phase shifts are negative and small, and their magnitudes
rapidly decrease with ¢. Thus, to the leading order in (kR) we may approximate

b ~ —kR, other §; ~ 0. (39)

In this approximation, the scattering amplitude becomes

e — 1 2idg .
f(@) ~ T XPO(COSQ) + 0 = % X1 = —ZR, (40)

hence isotropic scattering cross-section

do
ds?

l

= |f|* ~ R?* in all directions, (41)
and the total scattering cross-section is
oot = 4mR (42)

Note: this total scattering cross-sections is 4 times larger than the geometric cross-section
Ogeom = 7w R? of the sphere in question. However, this discrepancy does not raise a paradox

since one should not expect the geometric optics to work around objects of size R < .



LARGE SPHERE LIMIT

Now consider the opposite limit of the hard sphere having a large radius R > A, hence
ER > 1. In this limit, the scattering is not dominated by a single mode ¢ = 0; instead, it
gets noticeable contributions from great many modes, from ¢ = 0 to ¢ ~ kR > 1. To see
how this works, we see that for spherical Bessel functions with large ¢ > 1, the transition

between the short-distance regime

l
‘ x (20 4+ 1)
je(z) ~ [k ne(x) =~ T (35)
and the long-distance regime
‘ sin(x — (%) cos(x — (%)
jela) TR ey e SR (43)

happens at x ~ (¢ + 1) rather than = ~ 1. Consequently, for a given kR > 1, the phase
shifts of the very-large-¢ modes with ¢ > kR obtain from the short-distance approximation
to the Bessel functions despite kR > 1. Specifically, for these very-large-¢ modes

je(kR) (kR)>!

= ~ — 1 f 44
tande = T 0R) it on@i—on <L frt> kR (44)

SO we may approximate

o0 =~ 0 forl > kR. (45)

On the other hand, for modes with ¢ < kR we have

tandy, ~ —tan(kR —(3) (46)
and hence
0y = %T — kR. (47)

Actually, this approximation is good for ¢ < kR but becomes rather crude for ¢ = O(kR)
(but ¢ < kR). In this case, a better approximation — based on the WKB approximation to



the spherical Bessel functions — yields

o (0+1)
~ 2
(5@ ~ _Z — / dr kQ — T
(t+3)

— _g — \/(k:R)Q—(E+%)2 + (£+%)arccos(

l+
kR

)

D[ —

But fortunately, we do not need the gory details of this formula. All we need to know is
that for ¢ < kR, the phase shifts J, are large and change by a sizable fraction of m between
adjacent values of £. Consequently, sin’ d; as a function of £ jumps almost randomly between

0 and 1, and when we average its value over some range of ¢, we end up with

avg

<sin2 o), . = % (for £ < kR). (49)

Consequently, the total scattering cross-section is

o0
Otot = —= Z(% +1) sin® &,
=0

kR
5 X Z(2£+ 1) x <<sin2 o) = %)
=0

21 R
= 3% > @0+1)
/=0
2
k2
= 27R>.

Q

x (kR)?

Thus, the total scattering cross-section off a large hard sphere is twice the sphere’s geometric

cross-section, oot = 20geom-

For a large sphere of radius R > A\, we expect the geometric optics to be a good

approximation to the wave optics. Geometrically, relating the scattering angle to the impact



parameter b = Rcos(6/2), we obtain the partial scattering cross-section as

ahgﬂ — i@ = R_2 (50)
ds2 27 d cosf 4
thus isotropic scattering with the total cross-section ogeom = 7R?. In the wave optics,

calculating the partial cross-section is a lot harder than the total cross-section, so let me

simply give you the summary: For most angles,

o 2
D _pep ~ I (51)

aQ 1
exactly as in the geometric optics. However, eq. (51) breaks down at small angles § < (1/kR),
where the cross-section has a narrow but very high forward peak due to diffraction of the
wave around the sphere. The net cross-section over this forward peak is wR2, same as
the net cross-section over larger angles outside the forward peak, and that’s why the total

cross-section is oot = 2 X TRZ.
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