
Ward Identities

Consider a QED scattering process in which a photon is emitted,

X → Y + γ, (1)

where X and Y are some combinations of electrons and positrons, never mind the details.

Any Feynman diagram contributing to such process has an outgoing photon line, hence

M(X → Y + γ) = E∗
µ(k, λ)×Mµ (2)

where Mµ comprises the rest of the diagram — the vertices, the internal lines, and the

external lines for the electrons and positrons. If there are multiple diagrams for the process,

they all contain the E∗
µ(k, λ) factor, so the whole amplitude has form (2). The net Mµ factor

depends on the momenta of all the particles and on the spin states of the electrons and

positrons, but it does not depend on the outgoing photon’s polarization — that dependence

is carried by the E∗
µ factor.

Likewise, a process

X + γ → Y, (3)

in which a photon is absorbed has amplitude of the form

M(X + γ → Y ) = Eµ(k, λ)×Mµ (4)

where Mµ depends on all the momenta and also electron/positron spins, but not on the

incoming photon’s polarization.

As Lorentz vectors, the factors Mµ(k, . . .) are ⊥ to the photon’s momentum kµ,

kµ ×Mµ(k, . . .) = 0. (5)

This equation — and similar formulae for amplitudes involving multiple photons — are called

the Ward Identities after John Clive Ward who derived them in 1950. Physically, they stem
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from the electric current conservation, ∂µJ
µ(x) = 0, or in momentum space kµ× Jµ(k) = 0.

Next semester I shall prove the Ward identities in painful detail, but right now let me simply

show you what these identities are good for.

First of all, the Ward identity (5) provides for the gauge invariance of the scattering

amplitudes (2) and (4) despite the gauge-dependence of the photonic polarization vectors

Eµ(k, λ). Indeed, different gauge conditions for the quantum EM potential fields

Âµ(x) =

∫

d3k

(2π)3
1

2ω

∑

λ=±1

(

e−ikxEµ(k, λ)âk,λ + e+ikxEµ∗(k, λ)â†
k,λ

)

(6)

lead to different polarization vectors Eµ(k, λ), but since

Âµ(x)[in one gauge] − Âµ(x)[in another gauge] = ∂µ
(

some Λ̂(x)
)

, (7)

we must have

Eµ(k, λ)[in one gauge] − Eµ(k, λ)[in another gauge] = kµ ×
(

some f(k, λ)
)

. (8)

Consequently, the Ward identity kµMµ = 0 provides for the gauge-invariance of the ampli-

tudes M = EµWµ and M = Eµ∗Mµ.

For processes involving two external photons we have similar formulae:

M(X → Y + γ + γ) = E∗
µ(k1, λ1)E∗

ν (k2, λ2)×Mµν(k1, k2, . . .),

M(X + γ → Y + γ) = Eµ(k1, λ1)E∗
ν (k2, λ2)×Mµν(k1, k2, . . .),

M(X + γ + γ → Y ) = Eµ(k1, λ1)Eν(k2, λ2)×Mµν(k1, k2, . . .),

(9)

and in all 3 cases the Mµν obeys two Ward identities,

k1µ ×Mµν(k1, k2, . . .) = 0 and k2ν ×Mµν(k1, k2, . . .) = 0, (10)

one identity for each photon. Again, these identities provide for the gauge invariance of the

scattering amplitudes (9).
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Generalization to processes involving more photons is completely straightforward. A

process involving N external photons — incoming or outgoing — has amplitude of the form

M(X+photons → Y+photons) = E∗
µ
1

(k1, λ1)×· · ·×Eµ
N

(kN , λN )×Mµ1,...µN (k1, . . . , kn, . . .),

(11)

where the last factors obeys Ward identities for each of the photons,

∀i = 1, . . . , N, ki,µ
i

×Mµ1,...µN (k1, . . . , kn, . . .) = 0. (12)

Caveat:

The Ward identities do not work for separate Feynman diagrams, but only to complete sums

of all the diagrams that contribute to a particular process at each order of the perturbation

theory. For example, consider the annihilation process e+ + e− → 2γ. At the three level,

there are two diagrams contributing to the annihilation amplitude

q

e− e+

γ1 γ2

+
q̃

e− e+

γ1 γ2

(13)

thus

M = E∗
µ(k1, λ1)E∗

ν (k2, λ2)×Mµν for Mµν = Mµν
1

+ Mµν
2

(14)

where Mµν
1

comes from the first diagram and Mµν
2

from the second diagram. These ampli-

tudes are evaluated in detail in the next set of my notes, where we shall see that the Mµν
1

and the Mµν
2 do not obey the Ward identities by themselves, but only after we add them

together,

k1µ ×Mµν
1

6= 0, k1µ ×Mµν
2

6= 0, but k1µ ×Mµν
net = 0, (15)

and likewise for the second photon.

3

http://www.ph.utexas.edu/~vadim/Classes/2022f/annihilation.pdf


Polarization Sums

Besides proving gauge invariance of the photonic amplitudes, the Ward identities are

good for summing amplitudes2 over photonic polarizations. For example, for the X → Y +γ

processes involving a single outgoing photon, the Ward identities lead to

|M|2 def
=

∑

λ

∣

∣E∗
µ(k, λ)×Mµ

∣

∣

2
= −MµM∗

µ ≡ −gµνMµMν∗. (16)

To simplify the proof of this relation, let me work in the coordinate frame where the photon

moves in the x3 direction, thus kµ = (ω, 0, 0, ω). In this frame, the Ward identity becomes

kµ ×Mµ = ωM0 − ωM3 = 0 =⇒ M0 = M3. (17)

The polarization vectors for the photon helicities λ = +1 and λ = −1 and kµ = (ω, 0, 0, ω)

are respectively

Eµ(λ = +1) =
(

cR,
+1√
2
, −i√

2
, cR

)

and Eµ(λ = −1) =
(

cL,
−1√
2
, −i√

2
, cL

)

(18)

where cL and cR depends on the gauge (in the Coulomb gauge cL = cR = 0), but thanks

to the Ward identity (17) this gauge dependence cancels out from the polarized scattering

amplitudes

M(γL) = E∗
µ(λ = −1)×Mµ = cL ×

(

M0 −M3 = 0
)

− −M1 + iM2

√
2

,

=
+M1 − iM2

√
2

, (19)

M(γR) = E∗
µ(λ = +1)×Mµ = cR ×

(

M0 −M3 = 0
)

− +M1 + iM2

√
2

.

=
−M1 − iM2

√
2

. (20)

Now suppose the photon detector is un-polarized, i.e., equally sensitive to both photon

4



polarizations. Summing the |M|2 over λ = ±1, we obtain

|M|2 = |M(γL)|2 + |M(γR)|2 =

∣

∣

∣

∣

M1 − iM2

√
2

∣

∣

∣

∣

2

+

∣

∣

∣

∣

−M1 − iM2

√
2

∣

∣

∣

∣

2

=
∣

∣M1
∣

∣

2
+

∣

∣M2
∣

∣

2
.

(21)

Moreover, thanks to the Ward Identity (17), we may re-write the RHS here as

∣

∣M1
∣

∣

2
+

∣

∣M2
∣

∣

2
=

∣

∣M1
∣

∣

2
+

∣

∣M2
∣

∣

2
+

∣

∣M3
∣

∣

2 −
∣

∣M0
∣

∣

2
= −gµνMµM∗ν , (22)

hence

|M|2 = |M(γL)|2 + |M(γR)|2 = −gµνMµM∗ν ≡ −MµM∗
µ . (16)

Although we have derived this formula in a particular coordinate frame (where the photon

flies along the z axis), both sides of this equation are Lorentz invariant. Therefore, eq. (16)

must be valid in all coordinate frames.

Eq. (16) applies to an outgoing photon whose polarization is not measured, but there is

a similar formula for an incoming photon from an un-polarized source

|M|2 =
1

2

(

|M(γL)|2 + |M(γR)|2
)

=
1

2
×−MµM∗

µ . (23)

Likewise, there are straightforward generalizations of eqs. (16) and (23) for processes involv-

ing multiple external photons. For example, for two photons

∑

λ1,λ2

|M(λ1, λ2)|2 = +MµνM∗
µν , (24)

and hence the un-polarized

|M|2 = +MµνM∗
µν ×











1
4

for X + 2γ → Y ,

1
2

for X + γ → Y + γ,

1 for X → Y + 2γ.

(25)

More generally, for a process involving N external photons — incoming or outgoing — with
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a polarized amplitude

M = E∗
µ
1

(k1, λ1)× · · · × Eµ
N

(kN , λN )×Mµ1,...µN (k1, . . . , kn, . . .), (26)

summing |M|2 over all the photons’ polarization results in

∑

λ1,...,λN

|M|2 = (−1)N ×Mµ1,...µN ×M∗
µ
1
,...µ

N

. (27)
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