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Covariant Derivatives in Quantum Mechanics

In my my notes on the local phase symmetry, I have defined the covariant derivative of a

charged field φ(x) as Dµφ(x) = ∂µφ(x) + iqAµ(x)φ(x). In 3D-vector notations and in Gauss

units, this definition becomes

D = ∇ −
iq

h̄c
A(x, t), Dt =

∂

∂t
+

iq

h̄
A0(x, t). (1)

In this section, we shall see how these covariant derivatives fit into ordinary quantum me-

chanics of a charged particle.

A classical charged particle in EM background has canonical momentum p different from

the ordinary kinematic momentum ~π = mv, namely

p = mv +
q

c
A(x), (2)

hence classical Hamiltonian

H(x,p) =
m

2
v2 + qA0(x) =

1

2m

(

p −
q

c
A(x)

)2
+ qA0(x). (3)

In quantum mechanics, this translates to the Hamiltonian operator

Ĥ =
1

2m

(

p̂ −
q

c
A(x̂)

)2
+ qA0(x̂), (4)

where p̂ is the canonical momentum operator which obeys the canonical commutation rela-

tions with the coordinate operator x̂,

[x̂i, x̂j ] = 0, [p̂i, p̂j] = 0, [x̂i, p̂j] = ih̄δij . (5)

Consequently, in the coordinate basis for the wave functions, the canonical momentum op-
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erator p̂ acts as a gradient, or rather

p̂ψ(x) = −ih̄∇ψ(x). (6)

As to the kinematic momentum ~π = mv, in quantum mechanics it’s defined as

~̂π = p̂ −
q

c
A(x̂), (7)

so in the coordinate basis it acts as

~̂πψ(x) = −ih̄∇ψ(x) −
q

c
A(x)ψ(x) = −ih̄

(

∇−
iq

h̄c
A(x)

)

ψ(x) = −ih̄Dψ(x) (8)

where D is the covariant space derivative (1). Consequently, in the coordinate basis, the

Hamiltonian operator (4) acts as

Ĥψ(x) =
−h̄2

2m
D2ψ(x) + qA0(x)ψ(x), (9)

where the vector potential A hides inside the covariant derivative D.

Now consider the time-dependent Schrödinger equation

ih̄
∂

∂t
|ψ〉 = Ĥ |ψ〉 (10)

which in the coordinate basis becomes

ih̄
∂

∂t
ψ(x, t) =

−h̄2

2m
D2ψ(x, t) + qA0(x, t)ψ(x, t). (11)

Moving the second term on the RHS to the LHS of the equation, we get

ih̄
∂

∂t
ψ(x, t) − qA0(x, t)ψ(x, t) =

−h̄2

2m
D2ψ(x, t) (12)

where the LHS amounts to

ih̄
∂

∂t
ψ(x, t) − qA0(x, t)ψ(x, t) = ih̄

(

∂

∂t
+
iq

h̄
A0(x, t)

)

ψ(x, t) = ih̄Dtψ(x, t), (13)

Dt being the covariant time derivative (1).
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Thus, we arrive at the covariant Schrödinger equation

ih̄Dtψ(x, t) =
−h̄2

2m
D2ψ(x, t). (14)

In this form, neither electric potential A0 nor the magnetic potential A are manifest in this

equation; instead, they are hiding inside the covariant derivatives Dt and D.
⋆

Note that the covariant derivatives are covariant only when the fields or wave-functions

on which they act undergo local phase transforms simultaneously with the gauge transform

of the EM potentials. Specifically, the covariant equations (14) require a gauge transform

A′(x, t) = A(x, t) + ∇Λ(x, t), A0′(x, t) = A0(x, t) −
1

c

∂

∂t
Λ(x, t) (16)

to be accompanies by the local phase transform of the wave function according to

ψ′(x, t) = exp

(

iq

h̄c
Λ(x, t)

)

× ψ(x, t). (17)

In the next section of these notes we shall see how this phase transform of the wave

function gives rise to the Aharonov–Bohm effect. But the Aharonov–Bohm effect is best

described in terms of the propagation amplitude — also called the evolution kernel — and

the way it transforms under EM gauge transforms. The propagation amplitude U(y ← x) is

defined as an amplitude of a particle initially at point x at time x0 to reach the point y at

⋆ As written, eq. (14) applies to a spinless non-relativistic charged particle. For a non-relativistic charged
particle of spin = 1

2
— like an electron or a proton — it becomes

ih̄Dtψ(x, t) = −
h̄2

2m
D

2ψ(x, t) −
gqh̄

4mc
B(x, t) · ~σψ(x, t) (15)

where σx, σy, σz are the Pauli matrices acting on the spin and g is the gyromagnetic factor. (For the
electron, g ≈ 2.) Since the magnetic field B is gauge-invariant, eq. (15) is just as covariant as eq. (14).
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a later time y0; in Dirac notations

U(y ← x) =
〈

y, y0|x, x0
〉

Heisenberg
= 〈y| exp

(

−i
y0 − x0

h̄
Ĥ

)

|x〉Schroedinger . (18)

Consequently, given the wave function (in the coordinate basis) at time x0, the propagation

amplitude gives us the wave function at a later time y0 as

ψ(y, y0) =

∫

d3xU(y ← x)ψ(x, x0). (19)

Now let’s apply this formula to the propagation amplitude and the wave function of a

charged particle. Under a gauge transform of the EM potentials, the wave function changes

its phase according to eq. (17). Hence, to compensate the phase change of ψ(x, x0) inside the

integral (19), the propagation amplitude U(y ← x) must change its phase by an opposite

factor exp
(

−(iq/h̄c)Λ(x, x0)
)

. At the same time, to change the phase of ψ(y, y0) on the

LHS of eq. (19), the U(y ← x) must change its phase by exp
(

+(iq/h̄c)Λ(y, y0)
)

. Altogether,

under a gauge transform of the EM potentials, the propagation amplitude of a charged

particle changes its phase by

U ′(y ← x) = U(y ← x)× exp

(

iq

h̄c

(

Λ(y)− Λ(x)
)

)

. (20)

Aharonov–Bohm Effect

In classical mechanics, the motion of a charged particle depends only on the electric and

magnetic tension fields E and B; the potentials A0 and A do not have any direct effect. Also,

the motion depends only on the E and B fields along the particle’s world-line — the EM fields

in some volume of space the particle never goes through do not affect it at all. But in quantum

mechanics, interference between two trajectories a charged particle might take depends on

the magnetic field between the trajectories, even if along the trajectories themselves B = 0.

This effect was first predicted by Werner Ehrenberg and Raymond E. Siday in 1949, but

their paper was not noticed until the effect was re-discovered theoretically by David Bohm

and Yakir Aharonov in 1959 and then confirmed experimentally by R. G. Chambers in 1960.
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Consider the following idealized experiment: Take a two-slit electron interference setup,

and put a solenoid between the two slits as shown below:

~B

path 1

path
2

The solenoid is thin, densely wound, and very long, so the magnetic field outside the solenoid

is negligible. Inside the solenoid there is a strong B field, but the electrons do not go there;

instead, they fly outside the solenoid along paths 1 and 2. But despite B = 0 along both

paths, the magnetic flux Φ inside the solenoid affects the interference pattern between the

two paths.

The key to the Aharonov–Bohm effect is the vector potential A. Outside the solenoid

B = ∇×A = 0 but A 6= 0 because for any closed loop surrounding the solenoid we have a

non-zero integral
∮

loop

A(x) · dx =

∫∮∫

inside the loop

including the solenoid

B(x) · d2Area = Φ. (21)

Locally, ∇×A = 0 makes the vector potential a gradient of some function so we may gauge

it away:

A(x) → A′(x) = A(x) + ∇Λ(x) = 0 for some Λ(x), (22)

but globally no single-valued Λ(x) can gauge away the vector potential along both paths

around the solenoid. Indeed, consider two points — the electron gun at x0 and some point

on the screen at y, and let

∆Λ = Λ(y) − Λ(x0). (23)
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Then using two different electron’s paths from x0 to y gives two different values of the ∆Λ:

∆Λ(path) =

∫

path

∇Λ · dx = −

∫

path

A(x) · dx

since A + ∇Λ = 0, (24)

∆Λ(path#1) − ∆Λ(path#2) = −

∫

path#1

A · dx +

∫

path#2

A · dx

= −

∮

A(x) · dx = −Φ 6= 0, (25)

which is utterly impossible for any single-valued Λ(x). Instead, we have two separate gauge

transforms parametrized by two different Λ(x): the Λ1(x) that gauges away A(x) along the

path #1, and the Λ2(x) that gauges away A(x) along the path #2, thus

∇Λ1(x) = −A(x) [along path#1],

∇Λ2(x) = −A(x) [along path#2],

and Λ1(x) 6= Λ2(x).

(26)

In quantum mechanics, a gauge transform affects not only the vector potential but

also the phase of a charged particle’s wave function and hence the propagation amplitudes,

cf. eq. (20). So consider an electron traveling along some path from the electron gun at x0

to some point y on the screen through a region where these is no magnetic field, B = 0,

but the vector potential does not vanish. We assume this A(x) to be time-independent, so

we may gauge it away using a time-independent Λ(x) without raising an electric potential,

A′ = A+∇Λ = 0 while A0′ = A0 = 0. Gauging away the vector potential also changes the

phase of the evolution amplitude according to

U0(y← x0) = UA(y ← x0)× exp

(

iq

h̄c

(

Λ(y)− Λ(x0)
)

)

(27)

where UA is the initial amplitude in presence of the vector potentialA(x), U0 is the amplitude
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resulting from gauging A away, and

Λ(y) − Λ(x0) =

y
∫

x0

∇Λ(x) · dx = −

y
∫

x0

A(x) · dx 〈〈 since A′ = A+∇Λ = 0 〉〉. (28)

Consequently,

U0(y ← x0) = UA(y← x0)× exp



−
iq

h̄c

y
∫

x0

A(x) · dx



 , (29)

or equivalently

UA(y ← x0) = U0(y← x0)× exp



+
iq

h̄c

y
∫

x0

A(x) · dx



 . (30)

Thus, given the amplitude U0 in the total absence of a vector potential, turning on a pure-

gauge vector potential changes the amplitude’s phase according to eq. (30).

In the Aharonov–Bohm experiment we have two different paths from the same point x0

(the electron gun) to the same point y on the screen. Along each path B = 0 but A 6= 0,

and the amplitudes depend on the vector potential according to eq. (30):

Upath 1
A (y ← x0) = Upath 1

0 (y ← x0)× exp






+
iq

h̄c

∫

path 1

A(x) · dx






,

Upath 2
A (y ← x0) = Upath 2

0 (y ← x0)× exp






+
iq

h̄c

∫

path 2

A(x) · dx






.

(31)

The interference pattern on the screen depends on the phase difference

∆ϕ(y) = arg
(

Upath 1(y← x0)
)

− arg
(

Upath 2(y← x0)
)

(32)

between the two amplitudes. In light of eqs. (31), this phase difference depends on the vector
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potential A as

∆Aϕ(y) = ∆0ϕ(y) +
q

h̄c

∫

path 1

A(x) · dx −
q

h̄c

∫

path 2

A(x) · dx . (33)

Moreover, the difference between the two integrals here is nothing but the magnetic flux

Φ inside the solenoid! Indeed, consider a closed loop around the solenoid that first follows

path 1 from the electron gun to the screen and then goes back to the electron gun along

path 2 (in reverse). For this loop,

∫

path 1

A(x) · dx −

∫

path 2

A(x) · dx =

∮

closed loop

A(x) · dx = Φ, (34)

hence

∆Aϕ(y) = ∆0ϕ(y) +
q

h̄c
× Φ. (35)

Thus, even though B = 0 along both paths an electron might take from the gun to the

screen, the quantum interference between the paths depends on the magnetic flux in the

solenoid!

Now consider the mathematical side of the Aharonov–Bohm effect — the cohomology of

the vector potential A(x). In a topologically trivial space — like the flat 3D space without

any holes — specifying A(x) modulo gauge transforms A(x)→ A(x)−∇Λ(x) is equivalent

to specifying the magnetic field B(x) = ∇ × A. However, in spaces with holes the vector

potential modulo ∇Λ(x) for single-valued Λ(x) contains more information than the magnetic

field: In addition toB(x) for x outside the holes, the vector potential also knows the magnetic

fluxes through the holes! Indeed, the integrals along closed loops

∮

loop

A(x) · dx = Φ(loop) (36)

are gauge-invariant for single-valued Λ(x), and when ∇ × A ≡ 0 everywhere outside the

holes, then the fluxes (36) depend only on the topologies of the loops in question — which

hole(s) they surround and how many times. In math, such integrals are called cohomologies

of the one-form A(x).
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In classical mechanics, the motion of a charged particle depends on the magnetic field

B in the region of space through which the particle travels, and it does not care about any

cohomologies of the vector potential A. But in quantum mechanics, the Aharonov–Bohm

effect makes quantum interference sensitive to the cohomologies that the classical mechanics

does not see. Specifically, when the space has some holes through which the particle does

not get to travel — like the solenoid (and a bit of space around it) in the AB experiment

— the interference between alternative paths on different sides of a hole depends on the

cohomology of A for that hole — i.e., the magnetic flux through the hole.

To be precise, the interference between two paths depends on the phase difference (35)

only modulo 2π — changing the phase by 2πn for some integer n would not affect the

interference at all. Consequently, the Aharonov–Bohm effect is un-detectable for

Φ =
2πh̄c

q
× an integer, (37)

or in other words, the AB effect measures only the fractional part of the magnetic flux

through the solenoid in units of

Φ1 =
2πh̄c

|q|
(38)

where q is the electric charge of the particles used in the experiment. For example, a SQUID

(SuperConducting Quantum Interferometry Device) measures the magnetic flux through a

hole surrounded by superconductor using Aharonov–Bohm–like interference of the Cooper

pairs in the superconductor. Since a Cooper pair has electric charge −2e, a SQUID measure

only the fractional part of the flux in units of

Φsquid =
2πh̄c

2e
= 2.067 833 667(52)× 10−7 Mx (Maxwells or Gauss× cm2). (39)

Note that particles of different charges would measure the fractional part of the magnetic

flux Φ in different units! Thus, were Nature kind enough to provide us with two particle

species with an irrational charge ratio q1/q2, then in principle we could have measured the

whole magnetic flux Φ and not just its fractional part in some units.
⋆

However, in reality

⋆ To be precise, we could have measure the fractional parts of Φ in different units Φ1 and Φ2, but for
irrational ratio Φ1/Φ2 this would have allowed us to reconstruct the whole flux Φ.
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all electric charges are integral multiplets of the fundamental charge units e. Consequently,

the AB effect using any existing particle species can measure only the fractional part of the

magnetic flux in universal units

Φu =
2πh̄c

e
= 2Φsquid . (40)

Mathematically, this reduction of our ability to measure the cohomology of the A field is

related to the compactification of the gauge symmetry group when all charges are integer

multiples of e. Indeed, consider a generic gauge transform parametrized by Λ(x, t) and let

u(x, t) = exp
(

i(e/h̄c)Λ(x, t)
)

∈ U(1). (41)

The U(1) here is a special case of U(N) — the group of complex unitary N × N matrices.

For N = 1, such a matrix is simply a unimodular complex number u; in other words, the u’s

in eq. (41) live on a unit circle in the complex plane. As a group, the U(1) is the group of

phase symmetries, where changing the phase by 2π × an integer has no effect whatsoever.

Taking a spacetime derivative of eq. (41) we get

∂µu(x) = u(x)×
ie

h̄c
∂µΛ(x), (42)

hence the gauge transform of the 4-vector field Aµ(x) can be restated in terms of u(x) as

A′

µ(x) = Aµ(x) +
h̄c

e
× iu−1(x)∂µu(x). (43)

At the same time, a charged field Ψ(x) of charge q = n× e transforms as

Ψ′(x) = Ψ(x)× exp

(

inq

h̄c
Λ(x)

)

= Ψ(x)×

[

exp

(

iq

h̄c
Λ(x)

)]n

= Ψ(x)× un(x). (44)

Thus, if all the fields have integer charges n in units of e, then any single-valued unimodular

u(x) parametrizes a single-valued gauge/phase transform, even if Λ(x) = (h̄c/e) arg(u(x))

happens to be multi-valued!
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In a topologically trivial spacetime, one can write down a single-valued Λ(x) for any

single-valued u(x), but this is not true in a spacetime with holes. For example, let’s focus on

time-independent gauge transforms and consider a space with a cylindrical hole (the solenoid

in the AB experiment); in cylindrical coordinates (ρ, φ, z), the points outside the hole have

ρ > ρh. The angle coordinate φ is multi-valued modulo 2π, but exp(iφ) is single valued. In

a space without the hole, exp(iφ) would be ill-defined along the axis, but outside the hole

it’s a perfectly well-defined single-valued function of x. Consequently, letting

Λ(ρ, φ, z) =
h̄c

e
× φ ⇐⇒ u(ρ, φ, z) = e+iφ (45)

would give us a multi-valued Λ(x) but a single-valued u(x). In the gauge theory with integral

charges only, such gauge transforms are legitimate — as long as all the charged fields and

the A(x) transform in a single-valued fashion, we don’t care if the Λ(x) parameter itself is

single-valued or multi-valued.

However, the magnetic fluxes through holes in space are not invariant under gauge trans-

forms with multi-valued Λ’s. Instead, they change by integral multiplets of the Aharonov–

Bohm flux unit (40). Indeed, for a gauge transform (45), the vector potential outside the

hole changes to

A′(x) = A(x) +
h̄c

e
∇φ = A(x) +

h̄c

e

nφ

ρ
(46)

where nφ is the unit vector in the φ direction. Consequently, the magnetic flux through the

hole changes by

Φ′ − Φ =
h̄c

e

∮

∇φ · dx =
h̄c

e

2π
∫

0

dφ =
2πh̄c

e
≡ Φu . (47)

Likewise, we may change the flux by any integer multiple k of the flux unit Φu using

u(x) = eikφ (single valued for integer k) =⇒ Φ′ = Φ + k × Φu . (48)

Consequently, specifying the vector potential A(x) modulo gauge transforms with single-

valued u(x) phases would give us fluxes through holes in space only modulo Φu; in other
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words, we can find the fractional parts of those fluxes (in units of Φu) but not the whole

parts. The Aharonov–Bohm effect measures precisely these data — the fractional parts of

the fluxes through holes. The whole parts of the fluxes are not detectable because they are

gauge-dependent in the theory with a compact group U(1) of local phase symmetries.

Magnetic Monopoles

The easiest way to visualize a magnetic monopole is by considering a pole of a long, thin

magnet or an end point of a long, thin solenoid. Let us choose our coordinates such that the

pole is at the origin and the magnet goes along the negative z semi-axis. Then, in spherical

coordinates (r, θ, φ), everywhere outside the magnet

B(r, θ, φ) =
m

r2
nr (49)

where nr us the unit vector in the radial direction, while inside the magnet there is magnetic

flux 4πm towards the pole.

Suppose the magnet is infinitely thin, infinitely long and does not interact with the rest

of the universe except through the magnetic field it carries. Classically, all one can observe

under such circumstances is the magnetic field (49), so for all intents and purposes we have

a magnetic monopole of magnetic charge M = m. (In Gauss units; in rationalized units

the magnetic charge is M = 4πm.) In quantum mechanics however, one can also detect

the Aharonov-Bohm effect due to the magnetic flux 4πm inside the magnet, and that would

make the magnet itself detectable along its whole length. Moreover, in quantum field theory

the AB effect would disturb the free-wave modes of the charged fields — instead of the plane

waves we would get eigen-waves of some x-dependent differential operator. This would give

rise to a Casimir effect — a finite and detectable change of the net zero point energy. For a

long thin magnet this Casimir energy would be proportional to the magnet’s length, so the

magnet would behave as a string with finite tension force T . Consequently, the two poles of

the magnet would not be able to separate from each other to infinite distance and acts as

independent magnetic monopoles. Instead, the North pole and the South pole would pull

each other with a finite force T no matter how far they get from each other.
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However, the Aharonov–Bohm effect disappears when the magnetic flux 4πm is an in-

tegral multiplet of 2πh̄c/q. Consequently, for an infinitely thin magnet there would not be

any Casimir effect, hence no string tension, and the poles would be allowed to move in-

dependently from each other as if they were separate magnetic monopoles. Since this can

happen only when the magnetic flux is not detectable by the AB effect, this gives rise to

the Dirac’s quantization condition: For all magnetic monopoles in the universe and for all

electrically-charged particles in the universe,

M × q = (12 h̄c)× an integer (50)

in Gauss units; in rationalized h̄ = c = 1 units, this condition reads

M × q = 2π × an integer. (51)

Consequently, if there is a magnetic monopole anywhere in the universe, all electrical charges

must be quantized.

A more rigorous argument was made by P. A. M. Dirac himself years before the discovery

of the Aharonov-Bohm effect. Instead of using just one vector potential A(x) to describe the

magnetic field of a monopole, Dirac have used two potentials AN (x) and AS(x) related by

a gauge transform. From the mathematical point of view, Dirac monopole is a gauge bundle,

a construction that generalizes multiple coordinate patches in Riemannian geometry.

Most Riemannian manifolds cannot be covered by a single coordinate system without

singularities or multi-valuedness. Instead, one covers the manifold with several overlapping

patches and uses different coordinate systems for each patch. This is OK as long as: (1)

the patches overlap their neighbors and collectively cover the whole manifold; (2) each patch

has a single-valued non-singular coordinate system; (3) in the overlap regions, the coor-

dinate systems of the overlapping patches map onto each other without singularities, i.e.,

the derivatives ∂xµ
(1)
/∂xν(2) are all finite and the matrix of those derivatives has a non-zero

determinant (the Jacobian).

In a gauge bundle, different patches covering a manifold have not only different coordi-

nate systems but also different gauges for the Aµ(x) and charged fields. But in the overlap
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regions, all fields from the overlapping patches are related to each other by a gauge transform,

eg.,

A
(2)
µ (x) = A

(1)
µ (x) − ∂µΛ

1,2(x), each Ψ
(2)
a (x) = Ψ

(1)
a (x)× exp

(

iqaΛ
1,2(x)

)

(52)

in the overlap between patches 1 and 2. Eq. (52) is written for the abelian gauge symmetry,

but there are suitable generalizations to the non-abelian symmetry groups. In string theory,

abelian and non-abelian gauge bundles on curved 6D manifolds play a very important role

in obtaining effective four-dimensional theories from the ten-dimensional superstring.

Dirac himself did not use the gauge bundle language, he simply divided the space outside

the monopole itself into two overlapping regions and wrote different but gauge-equivalent

vector potentials for each region. In spherical coordinates (r, θ, φ), the Northern region (N)

spans latitudes 0 ≤ θ < π− ǫ while the Southern region (S) spans ǫ < θ ≤ π; the two regions

overlap in a broad band around the equator. The vector potentials for the two regions are

AN (r, θ, φ) = m(+1− cos θ)∇φ = m
+1− cos θ

r sin θ
nφ ,

AS(r, θ, φ) = m(−1− cos θ)∇φ = m
−1 − cos θ

r sin θ
nφ ;

(53)

The two potentials are gauge-equivalent:

AN − AS =
2m

r sin θ
nφ = 2m∇φ (54)

so they lead to the same magnetic field, namely (49). Indeed,

∇×ANor S = ∇× (m(±1 − cos θ)∇φ)

= m (∇(±1− cos θ))×∇φ

= m
sin θ nθ

r
×

nφ

r sin θ

= m
nr

r2
.

(55)

The vector potentials (53) may be analytically continued to the entire 3D space (except the

monopole point r = 0) itself, but such continuations are singular. The AN (r, θ, φ) has a
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so-called “Dirac string” of singularities along the negative z semi-axis (θ = π), while the

AS(r, θ, φ) has a similar Dirac string of singularities along the positive z semi-axis (θ = 0).

To make a non-singular picture of the monopole field, Dirac used both vector potentials AN

and AS but restricted each potential to the region of space where it is not singular. The two

regions overlap, and in the overlap we may use either AN or AS , whichever we like.

In QFT or even in quantum mechanics, a gauge transform of the vector potential should

be accompanied by a phase transform of the charged fields or charged particles’ wave func-

tions. Consequently, for each charged species we must use different charged ΨN (x) and

ΨS(x) in the Northern and Southern regions; in the overlap ǫ < θ < π− ǫ, the two fields for

the same species are related according to eq. (52). For the gauge transform (54) in question,

ΨN
a (r, θ, φ) = ΨS

a (r, θ, φ) · exp (2iqmφ) . (56)

Both ΨN (x) and ΨS(x) are single-valued functions of x everywhere they are defined. In

the overlap region both functions are defined and both are single valued, so the phase factor

exp(2iqmφ) in eq. (56) must be single valued. This single-valuedness requires integer 2q×m,

hence the Dirac quantization condition (50).

Note: in the rationalized h̄ = c = 1 units, the magnetic charge of the monopole is

M = 4πm, so the Dirac quantization condition reads

q ×M = 2π × an integer. (57)

In Gauss units, the magnetic charge is M = m (without the 4π factor), but the phase in

eq. (56) associated with the gauge transform (54) is (2qm/h̄c)×φ, so the Dirac quantization

condition becomes

q ×M =
h̄c

2
× an integer. (58)

In Gauss units the magnetic charges and the electric charges have the same dimension-

ality. However, the quanta of the two charges are quite different: The electric charges of
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all free particles are quantized in units of e; hence, according to eq. (58), all the magnetic

charges should be quantized in units of

h̄c

2e
≈

137

2
e. (59)

Of course, as far as the Quantum ElectroDynamics is concerned, the monopoles do not

have to exist at all. But if they do exist, their charges must be quantized in units of (59).

Furthermore, if as much as one magnetic monopole exist anywhere in the universe then the

electric charges of all free particles must be exactly quantized. Historically, Dirac discovered

the magnetic monopole while trying to explain the value of the electric charge quantum e;

instead, he found a reason for the charge quantization, but no explanation for e2 ≈ h̄c/137,

and he was quite disappointed.

Today, we have other explanations of the electric charge quantization; in particular

the Grand Unification of strong, weak and electromagnetic interactions at extremely high

energies produces quantized electrical charges. Curiously, the same Grand Unified Theories

also predict that there are magnetic monopoles with charges (59). More recently, several

attempts to unify all the fundamental interactions withing the context of the String Theory

also gave rise to magnetic monopoles, with charges quantized in units of Nh̄c/2e, where N is

an integer such as 3 or 5. It was later found that in the same theories, there were superheavy

particles with fractional electric charges e/N , so the monopoles in fact had the smallest

non-zero charges allowed by the Dirac condition (58)! Nowadays, most theoretical physicists

believe that any fundamental theory that provides for exact quantization of the electric

charge should also provide for the existence of magnetic monopoles, but this conjecture has

not been proved (yet).

Suggested Reading: J. J. Sakurai, Modern Quantum Mechanics, §2.6.
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