
AXIAL ANOMALY

Introduction

Consider a QED-like theory with an exactly massless electron,

L = −1
4FµνF

µν + iΨ(6∂ − ie 6A)Ψ + Lgauge
fixing + Lghost + Lcounter

terms . (1)

The action of this theory is invariant under the global axial symmetry

Ψ(x) → exp(+iθγ5)Ψ(x), Ψ†(x) → Ψ†(x) exp(−iθγ5), Ψ(x) → Ψ(x) exp(+iθγ5),

(2)

which leads to the classical conservation of the axial current Jµ5 = Ψγµγ5Ψ, ∂µJ
µ5 = 0.

However, the measure of the functional integral over the electron fields

∫∫∫

D[Ψ(x)]

∫∫∫

D[Ψ(x)] exp
(

iS[Ψ,Ψ, Aµ]
)

(3)

— or rather, the UV-regulated measure of the functional integral over the electron fields in

the EM field background — is not invariant under the axial symmetry (2). Consequently,

the axial current Jµ5 is not conserved in the quantum theory. Instead, we have the axial

anomaly — also known as the triangle anomaly or the Adler–Bell–Jackiw anomaly —

〈

∂µJ
µ5(x)

〉

= −
e2

16π2

〈

ǫαβµνFαβ(x)Fµν(x)
〉

= −
e2

2π2
〈E ·B(x)〉 (4)

Formally, the anomalous non-conservation of the axial current obtains as

〈

∂µJ
µ5
〉

=
〈

∂µ
(

Ψγµγ5Ψ
)〉

= Tr

(

(∂µγ
µγ5)×

1

6D

)

(5)

where Tr is the functional trace in the space of Dirac spinor fields and 1/ 6D is the electron

1



propagator in the EM background. Diagrammatically, eq. (5) amounts to

〈

∂µJ
µ5(q)

〉

=

where q is the incoming momentum along the dotted line, the green vertex is

= −iqµ × γµγ5 , (6)

and the purple arrowed line is the electron’s propagator in the EM background. In terms of

the free electron propagator (denoted by a black arrowed line),

= +

+

+

+ · · ·

(7)

hence

〈

∂µJ
µ5(q)

〉

= a + b + c + d + · · · (8)

Actually, the photon-less diagram (8.a) vanishes by momentum conservation (which requires

q = 0 and hence zero green vertex); also the Dirac trace in the numerator vanishes even before
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one integrates over the loop momentum. Likewise, the one-photon diagram (8.b) vanishes

by Lorentz and charge-conjugation symmetries. (The photon is a C-negative vector while

∂µJ
µ5 is a C-positive pseudoscalar.) So the non-trivial contributions to the axial anomaly

begin with the two-photon diagram (8.c).

Adler–Bardeen Theorem

In fact, the axial anomaly comes entirely from the two-photon one-loop diagrams (8.c)

(there are two such diagrams related by the photon permutation). By the Adler–Bardeen

theorem, all the diagrams involving more than two photons cancel each other, and all the

multi-loop diagrams also cancel each other. Such cancellation works similarly to the Ward–

Takahashi identities for the vector current Jµ = ΨγµΨ, ∂µJ
µ = 0, cf. my notes for the

diagrammatic proof of the WT identities. However, for the one-loop two-photon diagrams

1 2

+

2 1

(9)

the proof of WT-like identities for the axial current fails due to un-regulatable UV divergence,

and that’s what leads to the axial anomaly.

To see how this works, consider the green −i 6 qγ5 vertex for the ∂µJ
µ5 between two

massless electron propagators:

S
def
=

q

pp+ q
=

i

6p+ 6q
× (−i 6qγ5)×

i

6p
. (10)

Since the massless propagators anticommute with the γ5 — indeed,

γ5 ×
1

6p
= γ5 ×

6p

p2
= −

6p

p2
× γ5 = −

1

6p
× γ5, (11)
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— we may rewrite the propagator-vertex-propagator combo (10) as

S = i
1

6p+ 6q
×
(

6q = (6p+ 6q)−6p
)

×

(

γ5
1

6p
= −

1

6p
γ5
)

= −i

(

1

6p
−

1

6p+ 6q

)

γ5. (12)

Now let’s put this combo between two photon vertices (ieγν) and (ieγµ):

(ieγν)× S × (ieγµ) = (ieγν)× (−i)

(

1

6p
−

1

6p+ 6q

)

γ5 × (ieγµ)

= −(ieγν)
i

6p
γ5(ieγµ) + (ieγν)

i

6p+ 6q
γ5(ieγµ)

= +(ieγνγ5)
i

6p
(ieγµ) − (ieγν)

i

6p+ 6q
(ieγµγ5).

(13)

Diagrammatically, this formula amounts to

ν µ

=

ν µ

−

ν µ

(14)

where the red vertex combines the photon and the axial current divergence into an axial-

photon-like vertex

µ

= ieγµγ5. (15)

Now let’s apply the diagrammatic equation (14) to the triangle diagrams (9). For the
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first triangle diagram we get

1 2

=

1 2

(A)

−

1 2

(B) (16)

and likewise for the second diagram

2 1

=

21

=

1 2

(C)

−

1 2

(D) (17)

When we add the two triangle diagrams on the LHS, on the RHS we get a formal cancellation:

Diagram (D) cancels diagram (A), and diagram (C) cancels diagram (B).

However, all these diagrams suffer from quadratic UV divergences, so when canceling

diagrams one must be careful identifying the corresponding momenta. Let the two photons
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have momenta k1 and k2 (treated as incoming, hence k1 + k2 + q = 0), then for the first

triangle diagram we have

p

p+ k2p− k1

1 2

=
p

p+ k2

1 2

(A)

−
p

p− k1

1 2

(B) (18)

and likewise for the second diagram

p′

p′ − k2p′ + k1

21

=
p′

p′ + k1

1 2

(C)

−
p′

p′ − k2

1 2

(D)

(19)

To properly cancel the diagrams for similar momenta in similar propagators, we need

p′ = p + k2 to cancel (A) and (D), (20)

p′ = p − k1 to cancel (B) with (C), (21)

and the two identifications are inconsistent since k1 + k2 = −q 6= 0! Thus, the cancellation

between all 4 diagrams works only if we can UV-regulate each diagram in a manner which

allows us to shift the loop momenta.

Or rather, we get a cancellation of the axial current divergence ∂µJ
µ5 at the two-photon

level only if we can find a UV regulator with the following properties:
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1. It does regulate the UV divergences of all the relevant diagrams.

2. It allows constant shifts of loop momenta,
∫

d4p→
∫

d4(p+ const).

3. It does not screw up the gauge invariance of QED (beyond the usual gauge fixing) and

the electric current conservation.

4. It preserves the chiral symmetry of massless electrons and hence the relation

i

6p+ 6q
× (−i 6qγ5)×

i

6p
=

(

i

6p+ 6q
−
i

6p

)

γ5. (22)

Alas, such UV regulators do not exist!

Indeed, let’s look at a few common (and not-so-common) UV regulators and see that

none of them has all four of the required features:

• Wilson’s hard-edge cutoff. Although it does regulate all the UV divergences, it clearly

fails the requirements 2, 3, and 4.

• The dimensional regularization fulfils the requirements 1, 2, and 3, but fails the re-

quirement 4 in a rather subtle way. Specifically, DR screws up the ǫαβµν tensor and

hence the relation of the γ5 matrix defining the chirality to the ǫαβµνγαγβγµγν . Con-

sequently, we end up with different analytic continuations of the γ5 matrix to D < 4

dimensions, the γ5(1) which anticommutes with all the γµ, and a different γ5(2) in the

axial symmetry current Ψγµγ5(2)Ψ. It is this difference which breaks the requirement 4.

• The Pauli–Villars cutoff also fulfils the requirements 1, 2, and 3 but breaks the chiral

symmetry. Indeed, the regulated axial current becomes

Jµ5reg = Ψγµγ5Ψ − ηγµγ5η (23)

where η PV compensator field — a very heavy charged Dirac field with a wrong sign of

the Hilbert-space norm (and hence wrong sign of η loops). Since the η field is massive

— its mass MPV acts as a UV cutoff scale Λ, — its axial current is not conserved,
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hence

∂µJ
µ5
reg = −2iMPV × ηγ5η 6= 0. (24)

Also, while the massless electron propagator obeys the relation (22), there is no similar

relation for the massive compensator field η,

i

6p+ 6q −MPV
× (−i 6qγ5)×

i

6q −MPV
6=

(

i

6p+ 6q −MPV
−

i

6q −MPV

)

γ5. (25)

⋆ Covariant higher-derivative regulator. Unlike the other UV regulators we have consid-

ered thus far, CHD do preserve both the gauge symmetry and the axial symmetry of

the massless QED. (Assuming that the covariant higher derivatives for the electron field

anticommute with the γ5, for example L ⊃ (−i/2Λ2)Ψ 6D3Ψ.) In particular, despite the

modified electron propagators and the modified axial divergence vertex, the modified

propagators and vertices do obey the appropriate generalization of eq. (22). The CHD

regulator also allows for shifting the loop momentum variable,
∫

d4p→
∫

d4p′, as long

as the constant p′ − p≪ Λ.

Unfortunately, while the CHD regulates the overall UV divergences of all the multi-

loop graphs, it fails to regulate the divergences of some of the one-loop graphs. In

particular, it fails to regulate the triangle graphs (9) or the (A), (B), (C), (D) graphs.

Indeed, if the highest covariant derivative of the electron field in the Lagrangian is Dn,

then at very large loop momentum p,

each propagator ∝
1

pn
, each one-photon vertex ∝ pn−1, (26)

and hence the superficial degree of divergence for a graphs like (A), (B), (C), (D) is

D = 4 + 2× (n− 1) − 2× n = +2, (27)

so these graphs remain quadratically divergent despite the CHD regulator.
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On the other hand, by adding enough covariant derivatives of the EM field — or

equivalently, ordinary derivatives of the Fµν , for example

L ⊃ −
1

4
Fµν
(

−∂2/Λ2)nF µν , (28)

— one may regulate all the multi-loop graphs such as

(29)

Thanks to the very existence of such a regulator, one can diagrammatically prove the

Ward–Takahashi-like identities of the axial symmetry for all the multi-loop graphs.

In particular, one can show that all the multi-loop contributions to the axial current

divergence ∂µJ
µ5 cancel each other. And that’s why the axial anomaly is a purely-one-

loop effect — which is what the Adler–Bardeen theorem says.

⋆ ⋆ ⋆

Let me complete this section by considering the multi-photon one-loop diagrams for the

axial anomaly such as

(30)

for nγ = 4 photons. Similarly to what we had for nγ = 2, we may re-express any such

9



diagram as a difference

= −

(31)

and then after we sum over nγ ! permutations of the nγ photons, we end up with a formal can-

cellation of the net amplitude. But the real cancellation happens if and only if the diagrams

are UV finite, or at worst logarithmically divergent, since a log Λ divergence allows constant

shifts of loop momenta. But for UV divergences worse than logarithmic, we would need a

UV regulators that both allows momentum shifts and does not screw up the relations (31)

— and alas, there are no such regulators.

So what is the superficial degree of divergence of an nγ-photon one-loop diagram? The

diagrams on the RHS of eq. (31) have nγ vertices and nγ fermionic propagators; in the

absence of CHD regulators, the vertices are (ieγµ) or (ieγµγ5) without any powers of the

loop momentum, while the propagators scale like 1/p, hence the net superficial degree of

divergence

D = 4 − nγ . (32)

Thus, for nγ > 4, all the diagrams are UV finite, so we may shift their respective loop

momenta as we please, hence the formal cancellation becomes real cancellation. Likewise,

for nγ = 4, the diagrams are logarithmically divergent, but we may still shift their respective

loop momenta as we please, so again the formal cancellation becomes real cancellation. Thus,

the only possible contributions to the axial anomaly are the diagrams with nγ ≤ 3 photons.

Moreover, for nγ = 1 or nγ = 3 the net amplitude vanishes by the charge-conjugation

symmetry of QED: the axial current divergence ∂µJ
µ5 is C-even while the photons are C-

odd, so the number of photons contributing to the anomaly must be even. Also, for nγ = 0

the diagram vanishes even before we integrate over the loop momentum because qµ = 0 in
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the green vertex, and also because the Dirac trace in the numerator vanishes due to too few

γ matrices. And this leaves us with the only non-trivial contribution for nγ = 2. Thus, the

axial anomaly of QED comes entirely from the two triangle diagrams

〈

∂µJ
µ5(q)

〉

=

1 2

+

2 1

+ nothing else.

(9)

Calculating the Triangle Anomaly

In this section I am going to evaluate the UV-regulated triangle diagrams (9) for the

axial anomaly. People have evaluated these diagrams using a wide variety of UV regulators,

— and you can find many of them in different textbooks, — but in these notes I am going

to use Pauli–Villars. Thus, the regulated axial current is

Jµ5reg = Ψγµγ5Ψ − ηγµγ5η (33)

where η is the PV compensating field: it’s a Dirac spinor, of the same electric charge −e as

the electron but of a very large mass M , and it’s loops carry a wrong sign, hence the ‘−’

sign of the second term in eq. (33). Classically, in the EM background

6DΨ = 0, DµΨγ
µ = 0, but 6Dη = −iMη, Dµηγ

µ = +iMη, (34)

hence

∂µ
(

Ψγµγ5Ψ
)

=
(

DµΨγ
µ
)

× γ5Ψ − Ψγ5 ×
(

6DΨ
)

= 0 + 0 = 0 (35)

but

∂µ
(

ηγµγ5η
)

=
(

Dµηγ
µ
)

×γ5η − ηγ5×
(

6Dη
)

= +iMη×γ5η − ηγ5×(−iMη) = +2iMηγ5η

(36)
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instead of zero, and therefore

〈

∂µJ
µ5
reg

〉

= −2iM
〈

ηγ5η
〉

6= 0. (37)

Diagrammatically, we can get the same result (37) from the following argument: The

PV-regulated triangle graph amounts to

1 2

REG

=

1 2

Ψ loop

−

1 2

η loop

(38)

where the double line is the heavy η propagator. For a massless electron propagator we saw

that

i

6p+ 6q
× (−i 6qγ5)×

1

6q
=

+i

6p+ 6q
× γ5 + γ5 ×

i

6p
(39)

and hence

1 2

=

1 2

−

1 2

(14)

But for the massive η propagator, the algebra is more complicated:

γ5 ×
1

6p−M
= γ5 ×

6p +M

p2 −M2
=

M−6p

p2 −M2
× γ5 = −

1

6p +M
× γ5, (40)
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hence

i

6p+ 6q −M
× (−i 6qγ5)×

i

6p−M
=

= −i
1

6p+ 6q −M
6q

1

6p+M
× γ5

= −i
1

6p+ 6q −M

(

(6p+ 6q −M) − (6p +M) + 2M
) 1

6p+M
× γ5

= −
i

6p +M
× γ5 +

i

6p+ 6q −M
× γ5 +

i

6p+ 6q −M
(2iM)

i

6p +M
× γ5

= γ5 ×
i

6p−M
+

i

6p+ 6q −M
× γ5 −

i

6p+ 6q −M
× (+2iMγ5)×

i

6p+M
,

(41)

and therefore

1 2

=

1 2

−

1 2

−

1 2

(42)

where the blue vertex’s factor is +2iMγ5. Substituting eqs. (14) and (42) into the PV-

regulated triangle diagram (38), we get

1 2

=

1 2

(A)

−

1 2

(B) (43)

13



while

1 2

=

1 2

(A)

−

1 2

(B)

−

1 2

(C) (44)

and therefore

1 2

reg
=

1 2

reg

(A)

−

1 2

reg

(B)

+

1 2

η only

(C) (45)
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where the diagrams (A) and (B) are PV-regulated — i.e., obtain from differences between the

massless and the superheavy loops, — while the diagram (C) involves only the superheavy

field η.

Now let’s add a similar PV-regulated triangle diagram with the two photons exchanged,

1 ↔ 2. As we saw earlier, the diagram (A) for one photon order formally cancels the diagram

(B) for the other photon order, and vice verse. For the regulated — and hence UV-finite

— diagrams (A) and (B), a formal cancellation means actual cancellation, so all we are left

with are the diagrams (C) for the two photon orders. Thus,

1 2

reg
+

2 1

reg

=

1 2

η only

+

2 1

η only

(46)

which is the diagrammatic way of expressing

〈

∂µJ
µ5
reg

〉

= 2iM
〈

ηγ5η
〉

6= 0. (37)

15



⋆ ⋆ ⋆

After all these preliminaries, let’s actually evaluate the diagrams (46):

µ ν

k1 k2

q

p

p− k1 p+ k2

M = −

∫

d4p

(2π)4
tr







(2iMγ5)
i

6p+ 6k2 −M + i0
(ieγν)×

×
i

6p−M + i0
(ieγµ)

i

6p−6k1 −M + i0







= +2Me2
∫

d4p

(2π)4
N µν

D

(47)

where

D =
(

(p− k1)
2 −M2 + i0

)

×
(

(p+ k2)
2 −M2 + i0

)

×
(

p2 −M2 + i0
)

(48)

and

N µν = tr
(

γ5(6p+ 6k2 +M)γν(6p+M)γµ(6p−6k1 +M)
)

. (49)

To evaluate this Dirac trace, remember that the γ5 must be accompanied by an even

number ≥ 4 of the γα matrices. In our case, we have γν and γµ, so two more should come

from the three propagators’ numerators, while the third propagator’s numerator contributes

the factor of M , thus

N µν = tr
(

γ5(6p+ 6k2)γ
ν 6pγµM

)

+ tr
(

γ5(6p+ 6k2)γ
νMγµ(6p−6k1)

)

+ tr
(

γ5Mγν 6pγµ(6p−6k1)
)

.

(50)

Next, all 4 traces here have form

tr(γ5γαγβγγγδ) = 4iǫαβγδ, (51)
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hence

N µν = 4iMǫανβµ(p+ k2)αpβ + 4iMǫανµβ(p+ k2)α(p− k1)β + 4iMǫναµβpα(p− k1)β

= 4iMǫανβµ
(

+(p+ k2)αpβ − (p+ k2)α(p− k1)β + pα(p− k1)β

)

= 4iMǫανβµ
(

(p+ k2)αk1β + pα(p− k1)β = pαpβ + k2αk1β

)

〈〈 by antisymmetry of the ǫ tensor in α↔ β 〉〉

= 4iMǫανβµk2αk1β .
(52)

Note that this numerator is independent of the loop momentum p, hence

M = 2e2M ×N µν ×

∫

d4p

(2π)4
1

D
. (53)

At very large momenta, the integrand here behaves like (1/D) ∼ 1/p6, so the remaining

momentum integral is UV finite. To evaluate it, we introduce the Feynman parameters

x+ y + z = 1, thus

1

D
=

1
∫

0

d3(x, y, z) δ(x+ y + z − 1)
2

[ℓ2 −∆+ i0]3
(54)

where

ℓ2 − ∆(x, y, z) = z(p2 −M2) + x((p + k2)
2 −M2) + y((p− k1)

2 −M2) (55)

and hence

ℓ = p + xk2 − yk1 (56)

while

∆(x, y, z) = M2 − xzk22 − yzk21 − xyq2. (57)
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Consequently,

∫

d4p

(2π)4
1

D
=

1
∫

0

d3(x, y, z) 2δ(x+ y + z − 1)

∫

d4ℓ

(2π)4
1

[ℓ2 −∆+ i0]3
(58)

where

∫

d4ℓ

(2π)4
1

[ℓ2 −∆+ i0]3
=

∫

d4ℓE
(2π)4

−i

[ℓ2E +∆]3
=

−i

16π2

∞
∫

0

ℓ2e d(ℓ
2
e)

[ℓ2e +∆]3
=

−i

16π2
×

1

2∆
. (59)

Moreover,

∆(x, y, z) = M2 − O(k2 or q2). (60)

where M is the mass of the PV compensator, which acts as the UV cutoff. We presume

M ≫ any component of the external momenta kµ1,2, which gives us

1

∆(x, y, z)
=

1

M2
+

O(k2 or q2)

M4
≈

1

M2
(61)

and therefore

1
∫

0

d3(x, y, z) 2δ(x+ y + z − 1)
1

∆(x, y, z)
=

1

M2
+

O(k2 or q2)

M4
. (62)

Consequently, in eq. (53)

∫

d4p

(2π)4
1

D
=

−i

32π2M2

(

1 +
O(k2 or q2)

M2

)

(63)

and hence

M = 2e2M ×
(

N µν = 4iMǫανβµk2αk1β

)

×
−i

32π2M2

(

1 +
O(k2 or q2)

M2

)

= +
e2

4π2
ǫανβµk2αk1β ×

(

1 +
O(k2 or q2)

M2

)

−−−−→
M→∞

+
e2

4π2
ǫανβµk2αk1β .

(64)
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Or rather,

M(1st diagram) = +
e2

4π2
ǫανβµk2αk1β . (65)

The second diagram (46) is related to the first diagram by exchanging the two photons,

thus k1 ↔ k2 and µ ↔ ν. It is easy to see that the first diagram’s amplitude (65) is actually

symmetric between the two photons:

M(2nd diagram) = +
e2

4π2
ǫαµβνk1αk2β

〈〈 renaming α ↔ β 〉〉 = +
e2

4π2
ǫβµανk1βk2α = +

e2

4π2
ǫανβµk2αk1β

= M(1st diagram),

(66)

and thus the net anomaly amplitude is simply

Mµν
net = 2×

e2

4π2
ǫανβµk2αk1β. (67)

Finally, let us re-interpret the amplitude (67) in terms of photon fields, or rather Fourier-

transformed photon fields Aµ(k). Since the final state has two identical photons, we should

multiply the axial anomaly amplitude by 1
2A

µ(k1)A
ν(k2), thus

〈

(∂µJ
µ5)(q)

〉

= Mµν
net ×

1
2Aµ(k1)Aν(k2)

=
e2

2π2
ǫανβµk2αk1β ×

1
2Aµ(k1)Aν(k2)

=
e2

4π2
ǫανβµ

(

k2αAν(k2)
)(

k1βAµ(k1)
)

= −
e2

4π2
ǫανβµ × (∂αAν)(k1)× (∂βAµ)(k2),

(68)

which after Fourier transforming to the coordinate space becomes

〈

∂µJ
µ5(x)

〉

= −
e2

4π2
ǫανβµ × ∂αAν(x)× ∂βAµ(x). (69)

Since the ǫ tensor is separately antisymmetric in α ↔ ν and β ↔ µ, we may rewrite this
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formula as

〈

∂µJ
µ5
〉

= −
e2

4π2
ǫανβµ × 1

2(∂αAν − ∂νAα)×
1
2(∂βAµ − ∂µAβ)

= −
e2

16π2
ǫανβµFανFβµ .

(70)

And this completes my calculation of the axial anomaly.

Let me complete this section with a few words about the ǫFF combination on the RHS

of eq. (70). In the non-relativistic terms,

ǫανβµFανFβµ = 8E ·B. (71)

Similar to FανFαν = 2B2−2E2, the combination (71) is invariant under continuous Lorentz

symmetries, but it is a pseudoscalar rather than a scalar — it changes sign under the space

reflection x → −x. It is also C-even and therefore CP-odd and T-odd. Likewise, the axial

anomaly ∂µJ
µ5 is a pseudoscalar — since Jµ5 is an axial Lorentz vector while ∂µ is a true

Lorentz vector, — and it’s also C-even (cf. homework set#7) and hence CP-odd and T-odd.

Also, the ǫFF combination changes sign under electric-magnetic duality

Fαν → F̃αν
def
= 1

2ǫανβµF
βµ, (72)

or in the non-relativistic notations

E → Ẽ = −B, B → B̃ = +E. (73)

In terms of the dual EM fields, we may rewrite ǫFF as

ǫανβµFανFβµ = 2FανF̃
αν , (74)

so the axial anomaly is often written as

∂µJ
µ5 = −

e2

8π2
FανF̃

αν . (75)
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Anomaly of the Fermionic Integral’s Measure.

In the functional integral formulation of QED, the axial anomaly stems from the measure

D[Ψ]D[Ψ] of the fermionic functional integral not being invariant under the axial symmetry.

To see how this works, let’s go to the Euclidean spacetime, pick a fixed but a non-trivial EM

field background Aµ(x), and take a close look at the functional integral over the fermionic

fields in that background,

Z[Aµ] =

∫∫∫

D[Ψ]

∫∫∫

D[Ψ] exp

(

−SE [Ψ,Ψ, A
µ] = −

∫

Ψ 6DΨ d4xE

)

(76)

Now, let’s change the integration variables here from Ψ(x) and Ψ(x) to

Ψ′(x) =
(

iθ(x)γ5
)

Ψ(x) and Ψ
′
(x) = Ψ(x) exp

(

iθ(x)γ5
)

(77)

for some x-dependent phase θ(x). On one hand, this is just a variable change, so the

functional integral (76) in terms of the new variables should yield exactly the same partition

function as the integral over the old variables,

Z ′[Aµ] =

∫∫∫

D[Ψ
′
]

∫∫∫

D[Ψ′] exp
(

−SE [Ψ
′
,Ψ′, Aµ]

)

= original Z[Aµ]. (78)

On the other hand, the transform (77) changes both the Euclidean action — since a local

axial U(1) is not a symmetry of the theory — and the measure of the functional integral,

thus

SE [Ψ
′
,Ψ′, Aµ] = SE [Ψ,Ψ, A

µ] + ∆SE (79)

and the measure of the functional integral,

D[Ψ
′
]D[Ψ′] = D[Ψ]D[Ψ]×J (80)

where J is the functional Jacobian of the axial transform (77). Consequently,

Z ′[Aµ] =

∫∫∫

D[Ψ]

∫∫∫

D[Ψ]×J × exp
(

−SE [Ψ,Ψ, A
µ] − ∆SE

)

, (81)

so to keep this integral exactly the same as the original integral (76), the effects of the
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Jacobian and of the ∆S must cancel each other,

J × exp(−∆SE) = 1. (82)

Or equivalently,

logJ = ∆SE . (83).

Now let’s take a closer look at the Jacobian J and the action change ∆SE . The derivative

Dµ = ∂µ − ieAµ is covariant WRT to the vector phase symmetry of the electron field

accompanied by the gauge transform of the Aµ potential, but it is not covariant WRT to a

local axial transform (77). Instead, we have

DµΨ
′(x) = Dµ

(

eiθ(x)γ
5

Ψ(x)
)

=
(

∂µe
iθ(x)γ5)

Ψ(x) + eiθ(x)γ
5(

DµΨ(x)
)

= eiθ(x)γ
5
(

i(∂µθ(x))γ
5Ψ(x) + DµΨ(x)

)

,
(84)

hence

L′
E = Ψ

′
γµDµΨ

′ = ΨeiθΓ
5

γµeiθγ
5
(

(∂µθ)γ
5Ψ + DµΨ

)

= Ψγµ
(

i(∂µθ)γ
5Ψ + DµΨ

)

= i(∂µθ)×Ψγµγ5Ψ + ΨγµDµΨ

= i(∂µθ)× Jµ5 + Lorig
E ,

(85)

and therefore

∆SE =

∫

d4xe i(∂µθ)× Jµ5 = −i

∫

d4xe θ(x)× ∂µJ
µ5(x). (86)

As to the Jacobian, formally

D[Ψ′(x)]

D[Ψ(x)]
= Det

(

exp(iΘ̂γ5)
)

(87)

where Det is the functional determinant of the operator

exp(iΘ̂γ5) : ψα(x) 7→ exp(iθ(x)γ5)αβψβ(x) (88)
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acting in the Hilbert space of spinor-valued functions ψα(x1, x2, x3, x4). Likewise,

D[Ψ
′
(x)]

D[Ψ(x)]
= Det

(

exp(iΘ̂γ5)
)

, (89)

so altogether

J = Det2
(

exp(iΘ̂γ5)
)

= Det
(

exp(2iΘ̂γ5)
)

= exp
(

Tr(2iΘ̂γ5)
)

. (90)

Therefore, eq. (83) amounts to

−i

∫

d4xe θ(x)× ∂µJ
µ5(x) = Tr(2iΘ̂γ5) = 2iTr(Θ̂γ5). (91)

Now let’s evaluate the functional trace in this formula in the coordinate basis. Formally

Tr(Θγ5) =

∫

d4xe trDirac

(

〈x| Θ̂γ5 |x〉
)

=

∫

d4xe θ(x)× trDirac

(

〈x| γ5 |x〉
)

, (92)

but the diagonal matrix element here is UV-divergent as δ(4)(x − x) so it needs to be UV-

regulated. I shall discuss a suitable regulator momentarily, for the moment let’s simply

rewrite this formula as

Tr(Θγ5) =

∫

d4xe θ(x)× trDirac

(

〈x| γ5 |x〉reg
)

. (93)

In the context of eq. (91), it gives us

−i

∫

d4xe θ(x)× ∂µJ
µ5(x) = +2i

∫

d4xe θ(x)× trDirac

(

〈x| γ5 |x〉reg
)

. (94)

Moreover, the consistency of the fermionic functional integral requires this cancellation to

work for any x-dependent axial phase θ(x), and this calls for a local equation:

∀x : ∂µJ
µ5(x) = −2 trDirac

(

〈x| γ5 |x〉reg
)

. (95)
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Next, consider the UV regulation of the matrix element here. In general,

〈x| γ5 |x〉reg = 〈x| γ5Ĝ |x〉 (96)

for some operator Ĝ such that its coordinate-space matrix elements 〈x| Ĝ |y〉 are finite for

x = y but approximate the δ(4)(x− y) for distances≫ 1/ΛUV. In the momentum space, this

means

G(pe) ≈ 1 for p2e ≪ Λ2 but G(pe) ≈ 0 for p2e ≫ Λ2. (97)

However, back in the coordinate space, the regulating operator Ĝ should respect the gauge

symmetry of the QED, so it should involve the covariant derivatives Dµ rather than the

ordinary derivatives ∂µ. Moreover, since the functional trace in eq. (91) is in the Hilbert

space of spinor-valued wave functions with finite Euclidean actions SE =
∫

d4xe ψ 6Dψ, the

regulating operator Ĝ should be a function of the 6DE = γµED
µ
E combination rather that of

the four Dµ. (This point is explained in detail in §22.2–3 of the Weinberg’s textbook. Please

read these sections as a part of your next homework#22.) Also, the UV regulating operator

Ĝ should commute with the γ5 matrix so it would not screw up the Dirac trace in eq. (95).

Together, all these conditions require Ĝ to be a function of the positive-definite operator

−6D2
E ; specifically

Ĝ = G(−6D2
E/Λ

2) (98)

for some analytic function G(t) which behaves like

t = −6D2

Λ2

G(t)

1

1

G(t≪ 1) ≈ 1,

G(t≫ 1) ≈ 0,
(99)

In Euclidean spacetime

6D2 = D2 +
e

2
F µνσµν , (100)

and this is what gives the Ĝ operator it’s Dirac indices. Assuming F µν ≪ Λ2, we may
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expand Ĝ in powers of the tension fields, thus

Ĝ = G(−D2/Λ2)−
e

2Λ2
G′(−D2/Λ2)×F µνσµν +

e2

8Λ2
G′′(−D2/Λ4)×F κλF µνσκλσµν + · · · ,

(101)

where G′(t) = dG/dt, G′′(t) = d2G/dt2, etc. In the Dirac trace tr(Ĝγ5), we have

tr(γ5) = 0, tr(γ5σµν) = 0, but tr(γ5σκλσµν) = 4ǫκλµνE , (102)

hence to the leading order in F µν/Λ2,

trDirac(γ
5Ĝ) =

e2

2Λ4
G′′(−D2/Λ4)× ǫκλµνF κλF µν . ≈

Altogether, we have

∂µJ
µ5(x) = −2 trDirac

(

〈x| γ5 |x〉reg = 〈x| γ5Ĝ |x〉
)

= −2 〈x| trDirac(γ
5Ĝ) |x〉

≈ −
e2

Λ4
〈x|G′′(−D̂2/Λ2) |x〉 × ǫκλµνF κλ(x)F µν(x),

(103)

so let us calculate the remaining matrix element 〈x|G′′(−D̂2/Λ2) |x〉. Fourier transforming

to the momentum space, we have

〈x|G′′(−D̂2/Λ2) |x〉 =

∫

d4pe
(2π)4

e−ipxG′′(−D̂2/Λ2)e+ipx

=

∫

d4pe
(2π)4

G′′
(

(pρ − iDρ)2E/Λ
2
)

,

(104)

where on the last line the derivatives Dρ act on the F κλF µν fields to the right of the

matrix element on the bottom line of eq. (103). (And also on the Aπ fields in the other

derivatives Dπ in the expansion of the G′′.) However, all such derivatives produce effects
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O(external momenta) ≪ Λ, so to the leading order in 1/Λ

∫

d4pe
(2π)4

G′′
(

(pρ − iDρ)2E/Λ
2
)

≈

∫

d4pe
(2π)4

G′′
(

p2E/Λ
2
)

, (105)

specifically

1

Λ4

∫

d4pE
(2π)4

G′′
(

(pρ − iDρ)2E/Λ
2
)

=
1

Λ4

∫

d4pE
(2π)4

G′′
(

p2E/Λ
2
)

+ O

(

k2ext
Λ2

)

(106)

where the first term on the RHS is an O(1) constant. Indeed,

1

Λ4

∫

d4pE
(2π)4

G′′
(

p2E/Λ
2
)

=
1

Λ4

∞
∫

0

dp2e p
2
e

16π2
G′′(p2e/Λ

2)

〈〈 changing variable from p2e to t = p2e/Λ
2 〉〉 =

∞
∫

0

dt t

16π2
G′′(t)

〈〈 integrating by parts twice 〉〉 =
1

16π2

[

tG′(t)−G(t)
]t=∞

t=0

=
1

16π2
× 1,

(107)

because for t → ∞ we have G(t) → 0 and hence also tG′(t) → 0, while for t = 0 we have

tG′(t) = 0 while G(t) = 1. Thus, regardless of the details of the G(t) function, we have

1

Λ4

∫

d4pE
(2π)4

G′′
(

(pρ − iDρ)2E/Λ
2
)

=
1

16π2
+ O

(

k2ext
Λ2

)

. (108)

Consequently, in the Λ → ∞ limit, we end up with

∂µJ
µ5(x) = −

e2

16π2
ǫκλµνF κλ(x)F µν(x). (109)

This completes my explanation of the axial anomaly stemming from the non-invariant

measure of the fermionic functional integral.
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Axial Anomaly in QCD.

Axial anomalies exist in all kinds of gauge theories — abelian or non abelian — with

massless fermions. As a non-abelian example, consider QCD with Nf flavors of exactly

massless quark flavors. Or more generally, an SU(Nc) gauge theory with Nf ×Nc massless

Dirac fermions Ψi,f (x) in Nf copies of the fundamental Nc multiplet of the SU(Nc). Let’s

start with an axial symmetry which acts in the same manner on quarks of all colors and

flavors,

Ψi,f (x) → eiθγ
5

Ψi,f (x), Ψi,f (x) → Ψi,f (x)e
iθγ5

, same θ ∀i ∀f. (110)

The classical QCD action is invariant under this symmetry, so naively one expects a conserved

axial current

Jµ5 =
∑

i,f

Ψi,fγ
µγ5Ψi,f , ∂µJ

µ5 = classically = 0, (111)

but the measure of the fermionic functional integral is not invariant, and this leads to the

anomalous non-conservation of the axial current.

We may derive the anomaly of the fermionic integral exactly as we did in the previous

section for the QED, and we end up with a similar formula

∂µJ
µ5(x) = −2 〈x| tr(γ5Ĝ) |x〉 (112)

where Ĝ = G(−6D2/Λ2) is the UV-regulating operator, but this time the trace in eq. (112) is

over all the indices of the quark fields — Dirac, color, and flavor. Also, for the non-abelian

covariant derivatives Dµ = ∂µ + igtaAaµ(x) — where ta = 1
2λ

a are the SU(Nc) generators in

the fundamental multiplet, — we have

6D2
E = D2

E −
g

2
F aµνt

aσµν (113)

where F aµν are the non-abelian tension fields

F aµν = ∂µA
a
ν − ∂νA

a
µ − gfabcAbµA

c
ν . (114)
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Consequently,

tr(γ5Ĝ) =
g2

2Λ4
trcolors&flavors

(

G′′(−D2
E/Λ

2)ǫκλµνF aκλF
b
µνt

atb
)

+

(

subleading

powers of 1/Λ2

)

,

(115)

and therefore

∂µJ
µ5(x) = −

g2

16π2
ǫκλµνF aκλ(x)F

b
µν(x)× trcolors&flavors

(

tatb
)

. (116)

Since the ta and tb matrices act only on the colors, the trace over the flavors is trivially equal

to Nf , while the trace over the colors is

trcolors
(

tatb
)

= R

(

fundamental

multiplet

)

× δab =
1

2
× δab. (117)

Thus, the net anomaly of the axial U(1) current in QCD is

∂µJ
µ5(x) = −

g2Nf
32π2

ǫκλµνF aκλ(x)F
a
µν(x), (118)

which is often written down as

∂µJ
µ5 = −

g2Nf
16π2

tr
(

ǫκλµνFκλFµν
)

= −
g2Nf
8π2

tr
(

F̃µνF
µν
)

, (119)

where the trace is over the color indices of the non-abelian tension fields represented by

matrices in the fundamental multiplet of the SU(Nc).

The main difference between axial anomalies in QED and in QCD is that QCD has

non-abelian tension fields. In terms of the Feynman diagram and the amplitudes

M(∂µJ
µ5 → gluons), (120)

this means that QCD has not only the two-gluon amplitudes similar to the two-photon

amplitudes of QED but also the three-gluon and the four-gluon amplitudes. Actually, the

four-gluon amplitude from the anomaly (118) happens to vanish — proving this is a part
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of your homework set#22, namely problem 2(a). But the two-gluon and the three-gluon

amplitudes do not vanish; instead, they obtain from the 1-loop triangle and quadrangle

diagrams

1 2

reg
+

2 1

reg
(121)

and

1

2

3

reg + gluon permutations.

(122)

Similar to QED, the axial anomaly formally cancels between the diagrams related by the

gluon permutations, but this cancellation does not quite work unless the diagrams in question

are either UV finite (or only logarithmically divergent), or else the UV divergence can be

regulated without destroying the cancellation. All the multi-loop diagrams can be UV-

regulated by the covariant higher derivative method, so they do not contribute to the axial

anomaly. Instead, the anomaly comes solely from the on-loop diagrams with n ≤ 3 gluon

vertices (121) or (122), since the diagrams with n ≥ 4 vertices are finite or log-divergent.

In QED, the three-photon amplitudes similar to (122) must vanish due to the charge-

conjugation symmetry of QED. But in the non-abelian gauge theories like QCD, the charge
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conjugation works in a more complicated manner, namely

C : Ψi,f 7→ γ2Ψ∗
i,f and also Aaµt

a 7→ −Aaµ(t
a)∗, (123)

which means the gluon field Aaµ can be C-odd or C-even, depending on whether the corre-

sponding ta matrix is real or imaginary. Consequently, unlike QED in which the 3-photon

states are always C-odd, in QCD the three-gluon states can be either C-odd or C-even, de-

pending on the gluon’s colors; in particular, the fabcAaλA
b
µA

a
ν combination of the 3 gluons

is C-even. And that’s why QCD — unlike QED — does have 3-gluon contributions to the

axial anomaly stemming from the diagrams (122).

I leave the actual evaluation of the quadrangle diagrams (122)for your homework set#22,

problem 2(b–c). I suggest you do it similarly to how I handles the triangle diagrams in an

earlier section of these notes: First, you use the Pauli–Villars UV regulator for the quarks

and show that

1

2

3

reg
=

1

2

3

reg
−

1

2

3

reg

+

1

2

3

η only

(124)
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Second, you sum over the gluon permutations and show that all the regulated diagrams on

the RHS of eq. (124) cancel each other. Third, you evaluate the compensator-only loop

diagram. Hint: Bring the 3-gluon amplitude to the form

Mλµν = (pre-factor)×

∫

d

(

Feynman

parameters

)
∫

d4ℓ

(2π)4
N λµν

[ℓ2 −M2 − O(k2ext) + i0]4
, (125)

expand the numerator N λµν here into powers of the external momenta,

N λµν = N λµν
0 (ℓ,M) +

∑

i=1,2,3

kiα ×N α,λµν
1 (ℓ,M) + · · · , (126)

and argue that the integrals of terms carrying the higher-than-first powers of k1,2,3 are

proportional to the negative powers of M = ΛUV so they can be neglected in the M → ∞

limit. Likewise, argue that O(k2ext) term in the denominator can be neglected in theM → ∞

limit.

Finally, once you complete evaluating a particular compensator-loop diagram, do not

forget to sum once again over the gluon permutations.

⋆ ⋆ ⋆

QCD with Nf flavors of massless quarks has 2NFNc Weyl fermions — NfNc left-handed

ψfiL and NfNc right-handed ψ
fi
R , —

Lphys = −1
2 tr(FµνF

µν) + i
∑

f,i

ψ†
Lfiσ̄

µDµψ
fi
L + i

∑

f,i

ψ†
Rfiσ

µDµψ
fi
R , (127)

but the fermions of the same chirality and flavor but different colors are inter-related by the

gauge-covariant derivatives Dµ. Consequently, the continuous fermionic symmetries of QCD

may act on the quark’s flavors but not on their colors. For the infinitesimal symmetries, this

means

δψfiL = iǫ
∑

f ′

T fLf ′ψ
f ′i
L , δψfiR = iǫ

∑

f ′

T fRf ′ψ
f ′i
R , (128)

for some matrices TL and TR acting only on the flavor indices of the LH and RH quarks.

Specifically, TL and TR are two independent Nf ×Nf matrices, so the continuous symmetry

31



group of the QCD’s fermions is U(Nf )L × U(Nf )R. In terms of the Dirac quarks, the

infinitesimal symmetries (128) become

δΨfi = i
∑

f ′

(

T fV f ′ + T fAf ′γ
5)Ψf ′i (129)

for arbitrary Hermitian Nf × Nf matrices TV = 1
2(TR + TL) and TA = 1

2(TR − TL), hence

classically conserved vector and axial currents

Jµ[TV ] =
∑

i,f,f ′

Ψfiγ
µT fV f ′Ψ

f ′i,

Jµ5[TA] =
∑

i,f,f ′

Ψfiγ
µγ5T fAf ′Ψ

f ′i,

∂µJ
µ[TV ] = classically = 0 ∀ TV ,

∂µJ
µ5[TA] = classically = 0 ∀ TA .

(130)

In the quantum theory, all the vector currents Jµ[TV ] remain exactly conserved thanks to

the non-anomalous Ward–Takahashi identities. Indeed, all the diagrams which could lead to

these currents’ non-conservation formally cancel each other, and there is a UV regulator —

the dimensional regularization — which respects both QCD Feynman rules and the vector

flavor currents and hence makes sure the formal cancellation leads to the actual cancellation

of the UV-regulated diagrams.

But the axial flavor currents are subject to the anomalous mis-cancellation of the triangle

and quadrangle diagrams. Formally,

∂µJ
µ5[TA](x) = −2 〈x| tr(TAγ

5Ĝ) |x〉 (131)

where Ĝ is the UV regulating operator and the trace is over Dirac, color, and flavor indices.

Proceeding similarly to the flavor-blind axial symmetry, we end up with

∂µJ
µ5[TA](x) = −

g2

16π2
trcolors&flavors

(

TA × ǫκλµνFκλFµν
)

= −
g2

16π2
trflavors(TA)× trcolors

(

ǫκλµνFκλFµν
)

.

(132)

Thus, an axial flavor symmetry is anomalous if and only if its generator TA has a non-zero

trace; in U(Nf ) = SU(Nf )× U(1) terms this means that all the SU(Nf ) axial symmetries
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are anomaly-free but the U(1) axial symmetry is anomalous. Or in terms of the net chiral

symmetry of QCD with massless quarks,

U(Nf )L × U(Nf )R = SU(Nf )L × SU(Nf )R × U(1)V × U(1)A , (133)

where the U(1)A factor is anomalous while the other factors SU(Nf )L × SU(Nf )R ×U(1)V

are anomaly-free.

In QCD, the chiral symmetry (133) is spontaneously broken down to the vector U(Nf )V

symmetry by the expectation value of the quark-antiquark condensate
〈

ΨΨ
〉

6= 0. I shall

address this condensate and its consequences in a separate set of notes on non-linear sigma-

models, but for the moment let us simply stick to the Goldstone–Nambu theorem. Without

the axial anomaly, we would have spontaneous symmetry breaking

U(Nf )L × U(Nf )R −−→
SSB

U(Nf )V , (134)

thus N2
f broken generators in the adjoint multiplet of the unbroken U(Nf ), hence an adjoint

multiplet of N2
f massless Goldstone bosons. And since the broken symmetry currents are ax-

ial rather than polar vectors, the Goldstone bosons have negative parity, i.e. are pseudoscalar

rather than true scalar particles.

From the SSB point of view, the axial anomaly (132) is an explicit breaking of the

U(1)A axial symmetry, so despite the further spontaneous breaking of this symmetry by the

quark-antiquark condensate, the corresponding would-be Goldstone pseudoscalar turns out

to be massive rather than massive. On the other hands, the remaining N2
f − 1 Goldstone

pseudoscalars due to SSB of the anomaly-free chiral symmetries

SU(Nf )L × SU(Nf )R −−→
SSB

SU(Nf )V (135)

remain massless.
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In real-life QCD, two quark flavors u and d are particularly light. If we approximate

them as massless, we get chiral flavor symmetry

U(2)L × U(2)R =
(

SU(2)L × SU(2)R × U(1)V

)anomaly

free +
(

U(1)A

)anomalous
. (136)

When this symmetry is spontaneously broken down to the U(2)V = SU(2)isospinV × U(1)V ,

we get 4 would-be Goldstone pseudoscalars made from the u and d quarks and antiquarks,

namely the isotriplet π+, π0, π− of pions and the isosinglet eta-meson η. Without the quark

masses and the axial anomaly, all 4 of these mesons would be massless Goldstone bosons.

The small but not quite zero masses of the real-life u and d quarks provide a small explicit

breaking of the chiral symmetry, so the pions get a small non-zero mass mπ ≈ 140 MeV, and

without the anomaly the eta meson would have the same small mass. However, in real life

the eta meson is much heavier, mη ≈ 550 MeV, thus m2
η/m

2
π ≈ 16; historically, this large

mass difference was called the pi/eta puzzle. The solution to this puzzle is the axial anomaly

of the U(1)A axial current but not of the SU(2)A axial currents: This anomaly provides a

must stronger explicit breaking of the U(1)A symmetry than the quark masses’ breaking of

the whole U(2)A = U(1)A × SU(2)A. Altogether, the net U(A)A breaking turns out to be

about 16 times stronger that the SU(2)A breaking, and that’s why m2
η ≈ 16m2

π. Or rather,

that’s the reason for the m2
η ≫ m2

π in the 2-light-flavor approximation.

In real life, there is a third relatively light quark flavor s, albeit heavier than u or d, and

the η meson is only about 55% the isosinglet
√

1
2(|uū〉−

∣

∣dd̄
〉

) state while the remaining 45%

it’s |ss̄〉. Consequently, its mass2 gets contributions from both the axial anomaly of QCD

and from the s quark’s mass ms (as well as smaller contributions from the mu andmd). Also,

there is another pseudoscalar meson η′ that’s also a mixture of the isosinglet
√

1
2(|uū〉−

∣

∣dd̄
〉

)

state and the |ss̄〉 state, and its larger (mη′ ≈ 950 MeV)2 also gets contributions from both

ms and from the axial anomaly of QCD. I explain how this works at the end of my notes on

non-linear sigma models in QCD context.

⋆ ⋆ ⋆

Besides the QCD anomaly, some axial symmetries of the quarks — and hence of the

hadrons — are subject to the electromagnetic anomalies. To see how this works, let’s forget

34

http://www.ph.utexas.edu/~vadim/Classes/2022f/nlsm.pdf
http://www.ph.utexas.edu/~vadim/Classes/2022f/nlsm.pdf


about the QCD for a moment and consider the EM field Aµ(x) coupled to a bunch of massless

Dirac fermions Ψ1(x), . . . ,ΨN (x) of different electric charges q1, . . . , qN . Or rather some

charges may be similar while other charges are different. The fermions with similar charges

may be mixed with each other by the global vector or axial symmetries; infinitesimally,

δΨi(x) = iǫ
∑

j

(T iV j + T iAjγ
5)Ψj(x), (137)

where the hermitian matrices TV and TA must commute with the electric charge matrix Q =

diag(q1, . . . , qN ). Classically, there are conserved currents corresponding to these symmetries

Jµ(TV ) =
∑

ij

ΨiT
i
V jγ

µΨj , Jµ5(TA) =
∑

ij

ΨiT
i
Ajγ

µγ5Ψj , (138)

where the vector currents remain conserved in the fully quantum theory while the axial

currents are subject to the anomalies stemming from the triangular graphs

1

−iγµQ

2

−iγνQ

−i 6qγ5TA

+ photon permutation. (139)

In these diagrams we include all fermion species, hence the charge matrices Q in the photon

vertices and the TA matrix in the axial current vertex. Apart from these matrices, the

diagrams work exactly as in QED with a single massless electron, hence

M =
1

e2
trspecies of Ψ

(

Q2TA
)

×M[single electron] (140)

and therefore

∂µJ
µ5[TA] = −

1

16π2
ǫαβµνF

αβF µν × trspecies of Ψ
(

Q2TA
)

. (141)
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In particular, for the axial symmetries of the quarks’ flavors,

trspecies of Ψ
(

Q2TA
)

= 3colors × trflavors
(

Q2TA
)

, (142)

hence

∂µJ
µ5[TA] = = −

1

16π2
(

ǫαβµνF
αβF µν

)

EM
× 3 trflavors

(

Q2TA
)

. (143)

Phenomenologically, this EM axial anomaly is particularly important for the neutral

pion’s decay to two photons, π0 → γγ. To see how this works, note that the neutral pion

is the pseudo-Goldstone boson of the axial isospin current, specifically of the T 3 component

of the isospin which commutes with the electric charge. The T 3 generator is diagonal in the

flavor basis: it has eigenvalue +1
2 for the u quark, −1

2 for the d quark, and zero for all other

flavors, hence

trflavors
(

Q2TA
)

= +1
2Q

2(u) − 1
2Q

2(d) = +1
2(+2e/3)2 − 1

2(−e/3)
2 =

4− 1

18
e2 = +

e2

6
.

(144)

Consequently, the corresponding axial current has EM anomaly

∂µJ
µ5[T 3] = −

1

16π2
× 3×

e2

6
×
(

ǫαβµνF
αβF µν

)

EM
. (145)

But from the neutral pion’s point of view

Jµ5[T 3] = −fπ∂
µπ0 + multi-pion terms, (146)

so the EM anomaly translates to

fπ∂
2π0 + multi-pion terms =

e2

32π2
(ǫFF )EM . (147)

Besides the anomaly, there is further non-conservation of the axial current due to the quark
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masses, but we may account for this by adding the pion’s mass2 term to eq. (147),

fπ(∂
2 +m2

π)π0 + multi-pion terms =
e2

32π2
(ǫFF )EM . (148)

This anomalous equation of motion for the neutral pion field can be accounted by an effective

Lagrangian

Leff =
1

2
(∂µπ

0)2 −
m2
π

2
(π0)2 +

e2

32π2fπ
π0 × (ǫFF )EM + multi-pion terms. (149)

The neutral pion decays mostly into two photons (branching ratio B ≈ 99%), and

the amplitude for this decay follows directly from the red interaction term in the effective

Lagrangian (149):

M(π0 → γγ) = −8
e2

32π2fπ
× ǫαβµν(kαe

∗
β)1(kµe

∗
ν)2 . (150)

I’ll leave explaining the −8 factor and the following calculation of the net decay rate as an

exercise for the students; it’s going to be problem 4 of your next homework#23. For the

moment, let me simply note that the π0 decay amplitude (150) is inversely proportional to

the pion decay constant fπ. This is quite different from the weak decay amplitude of the

charged pion that is directly proportional to the fπ.

Anomalies in Chiral Gauge Theories.

Thus far, we have focused on axial symmetries of Dirac fermions in gauge theories. But

some gauge theories are chiral— that is, the left-handed Weyl fermions and the right-handed

Weyl fermions have different abelian charges or belong to different multiplet types of a non-

abelian gauge symmetry. For example, in the Standard Model, the left-handed quarks and

leptons belong to different multiplets of the electroweak SU(2)×U(1) than the right-handed

quarks and leptons.

In this section, we shall learn about anomalies of various fermionic symmetries of such

chiral theories. For simplicity, let’s start with an abelian U(1) gauge field Aµ coupled to
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NL left-handed Weyl fermions ψiL of respective charges qLi and to NR right-handed Weyl

fermion ψiR of respected charges qRi,

L = −1
4FµνF

µν + i

NL
∑

i=1

ψ†
Liσ̄

µ(∂µ + iqLiAµ)ψ
i
L + i

NR
∑

i=1

ψ†
Riσ

µ(∂µ + iqRiAµ)ψ
i
R , (151)

or in matrix notations

L = −1
4FµνF

µν + iψ†
Lσ̄

µ(∂µ + iQLAµ)ψL + iψ†
Rσ

µ(∂µ + iQRAµ)ψR . (152)

An infinitesimal global symmetry of the Weyl fermions here has general form

δψL(x) = iǫTLψL(x), δψR(x) = iǫTRψR(x), (153)

for some independent hermitian matrices TL and TR commuting with the respective electric

charge matrices QL and QR, and the classically conserved currents of such symmetries are

JµL = ψ†
LTLσ̄

µΨL and JµR = ψ†
RTRσ

µψR . (154)

When the Weyl fermions here happen to be the LH and the RH components of some Dirac

fermions, the LH and the RH current can be written as

JµL(T ) = 1
2J

µ
V (T ) − 1

2J
µ
A(T ), JµR(T ) = 1

2J
µ
V (T ) + 1

2J
µ
A(T ); (155)

but more generally, the JµL and the JµR are independent currents of unrelated Weyl fermions,

and these currents are not related to each other by parity.

To work out the possible anomalies of such classically conserved chiral currents we need

the Feynman rules for the charged Weyl fermions. The simplest way to derive these Feynman

rule is to promote each LH Weyl fermion to the left half of a Dirac fermion whose right half

is neutral and does not couple to anything. Likewise, each RH Weyl fermion is promoted to
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the right half of a Dirac fermion whose left half is neutral and does not couple to anything.

Consequently, we get massless Dirac propagators

=
i

6p + i0
=

i 6p

p2 + i0
(156)

for all the Weyl fermions, but the vertices have the 1
2(1 ∓ γ5) projection factors onto the

appropriate chirality:

µ

= −iQLγ
µ1− γ5

2
(157)

for the LH Weyl fermions, and

µ

= −iQRγ
µ1 + γ5

2
(158)

for the RH Weyl fermions. Likewise, the green vertices for measuring the current divergences

∂µJ
µ
L or ∂µJ

µ
R become

= −iTL 6q
1− γ5

2
or − iTR 6q

1 + γ5

2
. (159)

Now let’s focus on a single Weyl fermion — either left-handed or right-handed — or

electric charge Q = +e and global charge T = 1, and consider its contribution to the
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anomaly ∂µJ
µ
L orR. The triangle graph

µ ν

p

p− k1 p+ k2
(160)

evaluates to

−

∫

d4p

(2π)4
tr

(

−i 6q
1 ∓ γ5

2

i

6p+ 6k2
(−ie)γν

1∓ γ5

2

i

6p
(−ie)γµ

1∓ γ5

2

i

6p−6k1

)

. (161)

To simplify the Dirac trace here, we use the fact that γ5 anticommutes with all the massless

propagators here as well as with all the γµ factors in the vertices, hence

i

6p
(−ie)γµ

1∓ γ5

2
=

1∓ γ5

2
×
i

6p
(−ie)γµ (162)

and therefore

tr(· · ·) = tr

(

−i 6q

(

1∓ γ5

2

)3
i

6p+ 6k2
(−ie)γν

i

6p
(−ie)γµ

i

6p−6k1

)

〈〈 using (1∓ γ5)3 = 4(1∓ γ5) 〉〉

= tr

(

−i 6q
1∓ γ5

2

i

6p+ 6k2
(−ie)γν

i

6p
(−ie)γµ

i

6p−6k1

)

=
1

2
tr

(

−i 6q
i

6p+ 6k2
(−ie)γν

i

6p
(−ie)γµ

i

6p−6k1

)

∓
1

2
tr

(

−i 6qγ5
i

6p+ 6k2
(−ie)γν

i

6p
(−ie)γµ

i

6p−6k1

)

.

(163)

In Dirac fermion terms, the trace on the penultimate line here is the divergence of the vector

current while the trace on the bottom line is the divergence of the axial current. And when
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we UV-regulate the diagrams and sum over permutations of the two photons, the vector

current divergence cancels out while the axial current divergence yields the axial anomaly

we have seen earlier in these notes. Thus altogether, for a single Weyl fermion — left-handed

or right-handed —

∂µJ
µ
L = −

1

2
×

−e2

16π2
(ǫFF ),

∂µJ
µ
R = +

1

2
×

−e2

16π2
(ǫFF ).

(164)

For multiple Weyl fermions, the triangle graphs work in a similar way, except each photon

vertex comes with the matrix Q factor (instead of e), the current vertex has a matrix factor

T , and we should trace the product of these factors over the species of the Weyl fermions.

Thus, we end up with net anomalies

∂µJ
µ
L[T ] = +

1

32π2
(ǫFF )× trLHWF(Q

2
LTL),

∂µJ
µ
R[T ] = −

1

32π2
(ǫFF )× trRHWF(Q

2
RTR),

(165)

and if a global chiral symmetry involves both LH and RH Weyl fermions, then

∂µJ
µ[T ] =

1

32π2
(ǫFF )×

(

trLHWF(TLQ
2
L)− trRHWF(TRQ

2
R)
)

. (166)

Now consider a non-abelian chiral gauge theory, with gauge group G, the LH Weyl

fermions ψiL in some multiplet (m)L of G, and the RH Weyl fermions ψiR in some other

multiplet (m)R of G. In general, the multiplets (m)L and (m)R are reducible and may

contain multiple copies of the same irreducible multiplet, so we need some kind of “flavor”

indices to distinguish between them, and there are going to be all kinds of chiral flavor

symmetries acting on such indices. Specifically, for

(m)L = n1(m1) + n2(m2) + · · · , (m)R = n′1(m
′
1) + n′2(m

′
2) + · · · ,

the chiral flavor symmetry is

[

U(n1)× U(n2)× · · ·
]

L
×
[

U(n′1)× U(n′2)× · · ·
]

R
. (167)

But let’s skip the messy indexology of a general case and use the index-less matrix notations
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in which

L = −
1

2g2
tr(FµνF

µν) + iψ†
Lσ̄

µDµψL + iψ†
Rσ

µDµψR (168)

for the non-abelian covariant derivatives Dµ acting on the appropriate multiplets (m)L and

(m)R, and a general global chiral symmetry acts as

δψL(x) = iǫTLψ(x), δψR(x) = iǫTRψR(x) (169)

where the hermitian matrices TL and TR commute with all the generators ta of the gauge

symmetry G. The current of the symmetry (169) is

Jµ(T ) = ψ†
LTLσ̄

µψL + ψ†
RTRσ

µψR , (170)

it’s classically conserved by the equations of motion but may suffer from the anomalies due

to triangle and quadrangle Feynman diagrams.

The triangle diagrams (160) for the Weyl fermion loops in a non-abelian gauge theory

works exactly as in the abelian case, except that instead of the Q matrices in the gauge-boson

vertices we now have gta and gtb, so the trace over the species becomes g2 tr(T tatb). But

since the global symmetry generator T commutes with the gauge generators ta and tb, this

trace-over-the-species is not affected by the permutation of the two gauge bosons,

tr(T tatb) = tr(taT tb) = tr(T tbta), (171)

so it does not affect the cancellations between the two triangle diagrams. As to the trace

over the Dirac indices, similar to the abelian case we have

trWeyl = 1
2 tr

Dirac
vector ∓ 1

2 tr
Dirac
axial , (172)

so after we UV-regulate the diagrams and sum over the gauge boson permutations, the vector

terms cancel each other while the axial parts do not quite cancel but add up to the axial
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anomaly,

∂µJ
µ[T ]triangle =

g2

32π2

(

trLHWF(TLt
atb)− trRHWF(TRt

atb)
)

× ǫαβµν
(

F aαβF
b
µν

)2 gluon part

(173)

The non-abelian part of the ǫFF combination comes from the quadrangle diagrams

1

2

3

+ permutations of gauge bosons. (174)

Similar to the triangle diagrams, the Dirac trace here amounts to

trWeyl = 1
2 tr

Dirac
vector ∓ 1

2 tr
Dirac
axial , (175)

while the species trace has one more generator of the gauge symmetry, tr(T tatbtc). But since

the global symmetry generator T commute with all the gauge generators, this species trace

depends only on the cyclical order of the ta, tb, tc relative to each other,

tr(T tatbtc) = tr(T tbtcta) = tr(T tctatb),

tr(T tctbta) = tr(T tbtatc) = tr(T tatctb).
(176)

Consequently, when we UV-regulate the quadrangle diagrams and some over the cyclical

permutations of the gauge bosons, the vector parts of the diagrams cancel each other, while

the axial parts do not quite cancel but add up to the quadrangle parts of the axial anomaly,

cf. homework set#22 for the details. Finally, when we sum over the two cyclic orders of the
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gauge bosons we end up with

M ∝ tr(T tatbtc) − tr(T tctbta) = ifabc × C (177)

for exactly the same coefficient C as in

tr(T tatb) = δab × C. (178)

Consequently, the quadrangle diagrams yield the three-gauge-boson part of the anomaly

with the same overall coefficient as the two-gauge-boson anomaly (173),

∂µJ
µ[T ]quadrangle =

g2

32π2

(

trLHWF(TLt
atb)− trRHWF(TRt

atb)
)

× ǫαβµν
(

F aαβF
b
µν

)3 gluon part
.

(179)

And altogether,

∂µJ
µ[T ]net =

g2

32π2

(

trLHWF(TLt
atb)− trRHWF(TRt

atb)
)

× ǫαβµν
(

F aαβF
b
µν

)complete

non−abelian
.

(180)

For example, consider QCD with massless quarks. It’s a non-chiral gauge theory where

ψL and ψR form similar multiplets — namely Nf copies of the same fundamental multiplet

Nc — but it has a chiral flavor symmetry U(Nf )L × U(Nf )R. In this theory, trace over

species means trace over the colors and the flavors, thus for a flavor generator T and two

color generators ta = 1
2λ

a and tb = 1
2λ

b we have

trspecies
(

T tatb) = trflavors(T )× trcolors(t
atb) = trflavors(T )×

1
2δ
ab, (181)

hence the net anomaly of the chiral symmetry generated by T = (TL, TR) is

∂µJ
µ[T ]net =

g2

64π2
(

ǫαβµνF aαβF
a
µν

)

QCD
×
(

trflavors(TL) − trflavors(TR)
)

. (182)

Thus, out of the 2N2
f generators of the chiral flavor symmetry U(Nf )L × U(Nf )R, there is

only one anomalous generator, namely the U(1)A.

44



For a more interesting example, consider the electroweak SU(2)W × U(1)Y gauge sym-

metry, or rather its SU(2)W subgroup. Unlike QCD, the SU(2)W is chiral: All the LH

quarks and leptons form a bunch of SU(2)W doublets, while all the RH quarks and leptons

are SU(2)W singlets. Consequently, for any two SU(2)W generators ta and tb and any chiral

global symmetry of the quarks and leptons,

trRHWF

(

T tatb
)

= 0, (183)

while

trLHWF

(

T tatb
)

= tr2
(

tatb
)

× trLHdoublets(TL), (184)

where the first trace is over the gauge indices of a single SU(2)W doublet and the second

trace is over the remaining species indices distinguishing different doublets of LH quarks and

leptons from each other. Moreover,

tr2
(

tatb)
)

= tr

(

Pauli

matrices

τa

2

τ b

2

)

= 1
2δ
ab, (185)

thus
(

trLHWF(TLt
atb)− trRHWF(TRt

atb)
)

= 1
2δ
ab × trLHdoublets(TL) (186)

and therefore the SU(2)W anomaly

∂µJ
µ[T ] =

g22
64π2

(

ǫαβµνF aαβF
a
µν

)

SU(2)W
× trLHdoublets(TL). (187)

Note that this anomaly depends only on the global symmetry’s action on the LH quarks

and leptons but it does not care how it acts on the RH fermions. This global symmetry

may act in a chiral, axial, or even vector fashion, but we may still have a chiral anomaly

because the SU(2)W gauge symmetry itself is acting chirally. For example, consider the

lepton number symmetry: a vector U(1) symmetry under which all leptons — charged or

neutral, LH or RH, — have charge L = +1 while all the quarks have L = 0. Counting the
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LH Weyl fermion doublets, this gives us 3 doublets (νe, e
−), (νµ, µ

−), (ντ , τ
−) of L = +1

and 3× 3colors quark doublets of L = 0, thus

trLHdoublets(L) = 3× 1 + 9× 0 = 3 (188)

and hence non-zero SU(2)W anomaly

∂µJ
µ[L] =

3g22
64π2

(

ǫαβµνF aαβF
a
µν

)

SU(2)W
6= 0. (189)

Thus, in the Standard Model the lepton number is not exactly conserved!

Likewise, the baryon number is not exactly conserved. Indeed, the U(1)B is a vector-like

symmetry under which all the quarks have charge B = +1
3 while all the leptons have charge

B = 0, so if we count the LH doublets we get 3 lepton doublets of B = 0 and 9 quark

doublets — (u, d′), (c, s′), (t, b′), each coming in 3 colors — of B = 1
3 , thus

trLHdoublets(B) = 3× 0 + 3× 3× 1
3 = 3 (190)

and hence non-zero SU(2)W anomaly

∂µJ
µ[B] =

3g22
64π2

(

ǫαβµνF aαβF
a
µν

)

SU(2)W
6= 0. (191)

Curiously, the B−L combination of the baryon and lepton numbers happens to be conserved,

since eqs. (189) and (191) give exactly similar formulae for the ∂µJ
µ[L] and the ∂µJ

µ[B]. But

the baryon or lepton numbers themselves are not conserved, although the non-conservation

is non-perturbative and rather weak.

To see how this works, consider the net baryon or lepton number non-conservation

∆B = ∆L =

∫

d4x ∂µJ
µ[B orL] =

3g22
32π2

∫

d4x tr2
(

ǫFF
)

SU(2)W
. (192)

As you shall see in your next homework#23 (problem 2), the integrand here is a total

derivative,

tr(ǫFF ) = ∂αWα (193)

for some functionWα of the SU(2) gauge fields. However, the integral of this total derivative

does not vanish; instead, it depends on the gauge fields topology at x → ∞. Indeed, as I
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explained in the extra lecture Last Friday (April 7),

I =
g22

32π2

∫

d4x tr2
(

ǫFF
)

SU(2)
(194)

is the topological index of the SU(2) gauge fields, also known as the instanton number.

Thus,

∆B = ∆L = 3× I[SU(2)W gauge field configuration], (195)

which gives rise to 2 kinds on non-perturbative effects: instantons and sphalerons.

The instantons are tunneling events between topologically different vacuum states of

the non-abelian gauge fields, cf. ’t Hooft’s lecture notes (chapter 4) for details. In Eu-

clidean spacetime, they become compact configurations of the gauge fields which are self-

dual, 1
2ǫ
αβµν
E F µνE = +FαβE , and having the topological index I = +1. Consequently, because

of the SU(2)W anomaly of the baryon and lepton numbers, and instanton tunneling between

the vacuum states of the SU(2) gauge fields is accompanied by creation of quarks and leptons

and/or annihilation of antiquarks and antileptons, with the net effect of ∆B = ∆L = +3.

Likewise, there are inverse tunneling processes — the anti-instantons — which have anti-self-

dual gauge fields in Euclidean spacetime, 1
2ǫ
αβµν
E F µνE = −FαβE , and have topological index

I = −1; these events are accompanied by the creation of antiquarks and antileptons and/or

annihilation of quarks and leptons, with the net effect of ∆B = ∆L = −3.

The instantons and the anti-instantons of the SU(2)W have finite but large Euclidean

actions

SE =
8π2

g22
=

2π

α2
≈ 186. (196)

Consequently, the amplitude of any (anti)instanton mediated process like baryon-number-

violating decay

deuteron → antiproton + 3 positrons, ∆B = ∆L = −, (197)

is suppressed by a very small factor

exp(−SE) ∼ 10−81. (198)

This factor — and especially its square in the decay rate — is so small that we shall probably
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never observe this process experimentally. (Although we might see a baryon decay induced

by some other mechanism.)

The sphalerons exist in real (Minkowski) rather than Euclidean time. Or rather, a

sphaleron is a static but unstable semi-classical configurations of the SU(2)W gauge fields

and Higgs fields of large but finite energy

E ∼
2π

α2
MW ∼ 15 TeV. (199)

The sphaleron configuration is unstable and decays to waves of W and Higgs fields on top of

the vacuum — which in the quantum theory become large numbers ∼ 100 of W and Higgs

particles. Importantly, there are two topologically distinct ways for a sphaleron to decay,

one with I = +1
2 and the other with I = −1

2 . Consequently, when waves of Higgs and W

fields converge and assemble a sphaleron in a reverse process to one of the decay channels,

and then the sphaleron decays via the other channel, the net gauge field configuration in

Minkowski spacetime has I = ±1, and the anomaly leads to the net change of the baryon

and lepton numbers by ∆B = ∆L = ±3.

The sphalerons are too heavy to be made at the LHS, end even when the future acceler-

ators will reach higher energies, it would be very hard to create a non-trivial bound state of

so many quanta in a 2-particle collision. However, in the Early Universe the space was filled

with a hot plasma, so the sphalerons would have been regularly made and unmade in the

multi-particle collisions, and their abundance would have been governed by the Boltzmann

factor exp(−E/T ). In particular, soon after the electroweak transition — especially if it was

second-order or weakly first order — we would have a smaller Higgs VEV than today, which

would lead toMW ≪ T , hence exp(−Esphaleron/T ) being not too small, and therefore plenty

of sphalerons.

In thermal equilibrium, assembly and decays of sphaleron configurations via either of the

I = ±1
2 channels would be in detailed balance, so there would be no net change of baryon or

lepton numbers. However, if the hot plasma is out of chemical equilibrium and has non-zero

net baryon and/or lepton number densities, the sphaleron processes would be out of detailed

balance, and their net effect would bring Bnet and Lnet into equilibrium with each other
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while keeping the difference (B−L)net unchanged. Working through the chemical potentials

of various lepton and quark species, one finds that the plasma ends up with the equilibrium

having

Beq = 28
79(B − L) = 28

79(B − L)init, Leq = −51
79(B − L) = −51

79(B − L)init. (200)

Thus, the sphalerons at the electroweak transition time allow for the Leptogenesis route to

the baryon-antibaryon asymmetry of the present-day Universe. The leptogenesis works in

several stages:

• First, in the very early Universe some out-of-equilibrium CP-violating process creates

more anti-leptons than leptons. For example, suppose there exist right-handed neu-

trinos with very large Majorana masses. In the see-saw mechanism for the ordinary

LH neutrino’s masses, these RH neutrinos have Yukawa couplings to LH leptons and

the Higgs doublet, so they can decay into a lepton and a Higgs or an anti-lepton and

an anti-Higgs; for complex Yukawa couplings violating the CP symmetry, these decay

channels may have different branching ratios. Hence, if these RH neutrinos happen to

decay out of thermal equilibrium (because the Universe is cooling down due to Hubble

expansion faster than they decay), their decay products would contain more antilep-

tons than leptons (or the other way around). And once they all decay, the resulting

lepton number excess would remain frozen till the next stage of the leptogenesis.

• Second, the less-early Universe cools down to the electroweak transition, and for a while

the sphaleron energy is not much higher than the temperature. During this time, the

sphalerons are rapidly made and unmade, and in the process they bring the baryon

and the lepton chemical potentials to equilibrium with each other. Thus, part of the

initial antilepton-over-lepton excess becomes converted to the baryon-over-antibaryon

excess.

• When the temperature fall significantly below the electroweak transition, the sphaleron

energy becomes much larger than the temperature, the sphalerons become very rare,

and the sphaleron-mediated B and L violating processes stop. After this point, the

baryon asymmetry — a larger number of quarks than antiquarks — remains fixed to
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this day. However, the relative value of this asymmetry is initially rather small,

nquarks − nantiquarks
nquarks

∼ 10−9. (201)

• At much later later times when the temperature drops to about 170 MeV, the quarks

and the antiquarks become confined to mesons, baryons, and antibaryons, and then

the baryons and the anti-baryons annihilate each other. The annihilation products —

mostly mesons — decay to muons, electrons, and neutrinos, with µ+µ− and e+e− pairs

annihilating to photons. By the time the universe cools down to 100 keV, about half of

its net entropy is converted to photons (which today comprise the Cosmic Background

radiation) and the other half to the neutrinos. As to the baryons and the antibaryons,

they all annihilate each other except for the small baryon excess, so today

nbaryons
entropy density

∼ 10−9 (202)

while

nantibaryons < 10−20 × nbaryons . (203)

Gauge Anomalies

Thus far, we have focused on the anomalies of various global symmetries of the gauge

theories. But in a chiral gauge theory, the gauge symmetry itself could be anomalous,

which would then destroy the quantum consistency of the theory. For example, consider the

abelian EM gauge field Aµ coupled to massless chiral fermions ψiL and ψjR with different

electric charges qiL 6= qjR. As we have learned back in February, quantum consistency of

QED — and likewise of any chiral U(1) gauge theory — requires Ward–Takahashi identities

stemming from the electric current conservation,

∂µJ
µ
el = 0 for Jµel =

∑

i

qiLψ
†
Liσ̄

µψiL +
∑

j

qjRψ
†
Rjσ

µψjR, (204)

or in matrix notations

Jµel = ψ†
LQLσ̄

µψL + ψ†
RQRσ

µψR . (205)

This electric current has the same form as a global symmetry current with a chiral generator
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T = Q, so its anomaly has the same form:

∂µJ
µ
el =

A

32π2
× (ǫFF )EM (206)

where

A = trLHWF

(

Q2
L×(TL = QL)

)

− trRHWF

(

Q2
R×(TR = QR)

)

= trLHWF(Q
3
L)− trRHWF(Q

3
R),

(207)

or in terms of the individual Weyl fermions and their electric charges

A =
∑

ψL

Q3 −
∑

ψR

Q3. (208)

Thus, unless a chiral gauge theory happens to have A = 0, its electric current is not conserved

and the theory is inconsistent!

Diagrammatically, the inconsistency manifests itself as a failure of the Ward–Takahashi

identity of three-photon one-loop amplitude:

Mλµν =

νµ

λ

+

µν

λ

(209)

In a chiral theory with A 6= 0, instead of k1λM
λµν = 0 we get

k1λM
λµν =

iA

4π2
ǫαµβνk2αk3β 6= 0. (210)

In the functional integral formulation, a non-zero A breaks the gauge invariance of the

fermionic integral’s measure and hence the effective action for the gauge field due to the
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fermionic integral:

Ẑ[Aµ(x)] =

∫∫∫

D[Ψ(x)]

∫∫∫

D[Ψ(x)] exp

(

−

∫

d4xeΨ 6DΨ

)

= Det(6D), (211)

Seff
E [Aµ(x)] = Sclassical

E [Aµ(x)] − log Ẑ[Aµ(x)] = Sclassical
E − Tr

(

log(6D)
)

. (212)

While the classical Euclidean action of the theory is invariant under gauge transforms

ψL(x) → exp(iQLΛ(x))ψL(x),

ψR(x) → exp(iQRΛ(x))ψR(x),

Aµ(x) → Aµ(x) − ∂µΛ(x),

(213)

the measure of the fermionic integral (211) has a non-trivial Jacobian

J = Det2ψL

(

iQLΛ̂
)

× Det2ψR

(

iQRΛ̂
)

6= 1. (214)

The UV regulation and consequent evaluation of this formal Jacobian (or rather its log)

works similarly to what we had for the axial symmetry of the massless electron, except for

the factor ∓1
2 for the LH/RH Weyl fermions. Thus, for a single charged Weyl fermion we

get

∆gaugeS
eff
E = ∓

q3

32π2

∫

d4xe Λ(x)× ǫαβµνFαβ(x)Fµν(x), (215)

so for the whole set of both LH and RH Weyl fermions we get

∆gaugeS
eff
E =

−A

32π2

∫

d4xe Λ(x)× ǫαβµνFαβ(x)Fµν(x) (216)

for A = trLHWF(Q
3
L) − trRHWF(Q

3
R). (217)

⋆ ⋆ ⋆
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Now consider a non-abelian gauge theory with chiral fermions: ψiL in some multiplet

(m)L of the gauge group G and ψjR in some other multiplet (m)R. Classically, the gauge

symmetry currents

Jaµ = ψ†
Lt
a
Lσ̄

µψL + ψ†
Rt
a
Rσ

µψR (218)

— where taL and taR are matrices representing the gauge group generators in the (m)L and

(m)R multiplets — are covariantly conserved,

DµJaµ ≡ ∂µJaµ − fabcAµbJcµ = 0. (219)

But in the quantum theory, the measure of the fermionic functional integral

Ẑ[Aaµ] =

∫∫∫

D[Ψ]

∫∫∫

D[Ψ] exp

(

−

∫

d4xeΨ 6DΨ

)

= Det(6D) (220)

— and hence the effective action

Seff
E [Aaµ] = Sclassical

E [Aµ] − logDet(6D) (221)

for the gauge fields — are not invariant under the non-abelian gauge theories

δψL(x) = iΛa(x)taLψL(x),

δψR(x) = iΛa(x)taRψR(x),

δAaµ(x) =
−1

g
DµΛ

a(x).

(222)

Formally,

∆gaugeS
eff
E = −2Tr

(

Λ̂γ5
)

= −2

∫

d4xe Λ
a(x)× tr

(

〈x| taγ5 |x〉
)

, (223)

but the matrix element 〈x| · · · |x〉 needs to be UV regulated. And the UV regulation here is

more complicated than for a global chiral symmetry because the gauge symmetry generators

ta do not commute with the 6D.
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Diagrammatically, the chiral anomaly of the non-abelian gauge currents stem from the

one-loop 3-gauge-boson and 4-gauge-boson diagrams,

Mabc
λµν =

ν, cµ, b

λ, a

+

µ, bν, c

λ, a

(224)

and

Mabcd
λµνρ =

λ, a

µ, b ν, c

ρ, d

+ gauge boson permutations. (225)

The 3-gauge-boson diagrams (122) work similarly to the three-photon diagrams: Apart for

gauge group factors, both diagrams yield the same amplitude

kλ1Mλµν = ±
ig3

8π2
ǫαµβνk

α
2 k

β
3 , (226)

with the overall sign being + for the LH fermions and − for the RH fermions. But the group

factors are different for the two 3-gauge-boson diagrams:

tr
(

tctbta
)

for the left diagram (122),

tr
(

tbtcta
)

for the right diagram (122).
(227)

Consequently, summing up the two diagrams for each fermion chirality and then summing
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over the two chiralities, we end up with

kλ1M
abc
λµν =

ig3

8π2
× ǫαµβνk

α
2 k

β
3 ×Aabc (228)

where the net group factor Aabc amounts to

Aabc = trLHWF

(

ta{tb, tc}
)

− trRHWF

(

ta{tb, tc}
)

. (229)

Note that by the cyclic symmetry of the trace, Aabc is totally symmetric in its 3 indices.

The 4-gauge-boson diagrams (225) are more complicated. For the Weyl fermions of

specific LH or RH chirality, the anomalous amplitude kλ1M
abcd
λµνρ is ∓

1
2 of the axial amplitude

of the quadrangle diagram you should have calculated in homework#22 (problem 2), except

for a different group factor tr(tatbtctd) instead of tr(tatbtd). Thus,

kλ1M
abcd
λµνρ = ±

ig4

8π2
(k2 + k4)

αǫαµνρ × tr
(

tatbtctd
)

non-cyclic permutations of the 4 gauge bosons

= ±
ig4

8π2
ǫαµνρ ×











(k2 + k4)
α ×

(

tatbtctd − tatdtctb
)

+ (k3 + k2)
α × tr

(

tatctdtb − tatbtdtc
)

+ (k4 + k3)
α × tr

(

tatdtbtc − tatctbtd
)











= ±
ig4

8π2
ǫαµνρ ×











kα2 × tr
(

tatbtctd − tatdtctb + tatctdtb − tatbtdtc
)

+kα3 × tr
(

tatctdtb − tatbtdtc + tatdtbtc − tatctbtd
)

+kα4 × tr
(

tatbtctd − tatdtctb + tatdtbtc − tatctbtd
)











.

(230)

In this formula

tr
(

tatbtctd − tatdtctb + tatctdtb − tatbtdtc
)

= tr
(

tatb[tc, td] + ta[tc, td]tb
)

= if cde tr
(

tatbte + tatetc
)

= if cde × tr
(

{ta, tb}te
)

,

(231)
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and likewise

tr
(

tatctdtb − tatbtdtc + tatdtbtc − tatctbtd
)

= ifdbe × tr
(

{ta, tc}te
)

,

tr
(

tatbtctd − tatdtctb + tatdtbtc − tatctbtd
)

= if bce × tr
(

{ta, td}te
)

.
(232)

Thus, for the Weyl fermions of one particular chirality

kλ1M
abcd
λµνρ = ∓

g4

8π2
ǫαµνρ ×









kα2 × f cde tr
(

{ta, tb}te
)

+ kα3 × fdbe tr
(

{ta, tc}te
)

+ kα4 × f bce tr
(

{ta, td}te
)









, (233)

and when we sum up the contributions of both chiralities — and mind the opposite ∓ signs

for the two chiralities, — each remaining trace in this formula becomes

tr
(

{ta, tb}te
)

7→ − trLHWF

(

{ta, tb}te
)

+ trRHWF

(

{ta, tb}te
)

= −Aabe (234)

for exactly the same anomaly coefficients Aabe as for the 3-gauge-boson anomalies! Alto-

gether,

kλ1M
abcd
λµνρ = −

g4

8π2
ǫαµνρ ×









kα2 ×Aabefacd

+ kα3 ×Aacef edb

+ kα4 ×Aadef ebc









. (235)

In terms of the gauge currents Jaµ and their covariant divergences DµJaµ, the 3-gauge-

boson and the 4-gauge boson amplitudes (228) and (235) add up to

DµJaµ(x) = −
g4

316π2
ǫλµνρAabe ∂λ

(

Abµ

(

∂νA
e
ρ −

g

4
f ecdAcνA

d
ρ

))

= −
g4

32π2
ǫλµνρAabe ∂λ

(

Abµ

(

F eνρ +
g

2
AeνA

d
ρ

))

.

(236)

Note the g/4 coefficient in the top formula here is different from both

1
2ǫ
λµνρF eνρ = ǫλµνρ

(

∂νA
e
ρ −

g

2
f ecdAcνA

d
ρ

)

(237)

and from the Chern–Simons form proportional to the

ǫλµνρ
(

Abµ ∂νA
e
ρ −

g

3
f ecdAbµA

c
νA

d
ρ

)

. (238)

But regardless of such details, the most important aspect of eq. (236) is that all gauge
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currents are covariantly conserved if and only if all the anomaly coefficients Aabe happen to

vanish, or in other words, if all the symmetrized traces tr({ta, tb}te) happen to cancel out

between the LH and the RH Weyl fermions.

The same condition governs the gauge invariant of the effective action for the gauge fields

Seff
E [Aaµ] = Sclassical

E [Aµ] − log Det(6D). (239)

Indeed, eqs. (236) means that under an infinitesimal gauge transform parametrized by Λa(x),

the effective action varies by

∆gaugeS
eff
E [Aµ] = −

Aabeg3

16π2

∫

d4xe Λ
a × ǫλµνρ ∂λ

(

Abµ∂νA
e
ρ −

g

4
f ecdAbµA

c
νA

d
ρ

)

= +
Aabeg3

32π2

∫

d4xe ∂λΛ
a × ǫλµνρ

(

Abµ

(

F eνρ +
g

2
AeνA

d
ρ

))

.

(240)

Thus, the effective action is gauge invariant if and only if Aabe = 0.

Anomaly Cancellation

This far, we have learned that the chiral gauge theories are consistent as quantum theories

only if all the anomaly coefficients Aabc happen to cancel out between the LH and the RH

Weyl fermions. In this section, we shall see a few non-trivial examples of such cancellation

and learn some general rules for calculating the Aabc coefficients.

Let us start with the simple non-abelian gauge groups. A very useful concept for calcu-

lating anomalies in such theories is the cubic Casimir operator: it’s a cubic polynomial in

the gauge group generators,

Ĉ3 = dabct̂
at̂bt̂c (241)

with some totally symmetric coefficients

dabc = dbca = dcab = dcba = dacb = dbac (242)

57



chosen such that Ĉ3 commutes with all the generators,

[Ĉ3, t̂
d] = 0 ∀t̂d. (243)

Note: unlike the quadratic Casimir operator Ĉ2 = gabt̂
at̂b which exists for any simple Lie

algebra, the cubic Casimir operator exists in some simple Lie algebras but does not exist

for others. Specifically, it exists for all the SU(N) algebras with N ≥ 3 (and also for the

Spin(6) = SU(4)) but not for any other simple Lie algebras.

Theorem 1: If a simple Lie algebra G does not have a cubic Casimir operator, then for any

complete multiplet (m) of G, for any 3 generators t̂a, t̂b, t̂c of G, the matrices ta(m), t
b
(m), t

c
(m)

representing these generators in the multiplet (m) obey

tr
(

ta(m)t
b
(m)t

c
(m) + tb(m)t

a
(m)t

c
(m)

)

= 0. (244)

Or in more compact notations,

tr(m)

(

{ta, tb}tc
)

= 0. (245)

From the anomaly point of view, this means that if a simple gauge group G does not have

a cubic Casimir operator, then all the gauge anomaly coefficients Aabc automatically vanish

and the theory is anomaly-free regardless of the chiral fermion’s quantum numbers. Indeed,

as long as LH Weyl fermions belong to a complete multiplet (m)L of G and the RH Weyl

fermions belong to another complete multiplet (m)R, then regardless of what these multiplets

happen to be

Aabc = tr(m)L

(

ta{tb, tc}
)

− tr(m)R

(

ta{tb, tc}
)

= 0 − 0 = 0. (246)

Thus, if a simple gauge group G is SU(2), or any SO(N) with N 6= 6, or any USp(N), or

any exceptional group (G2, F4, E6, E7, or E8), we do not have to worry about the gauge

anomaly regardless of the chiral fermion’s quantum numbers.
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For the remaining types of simple gauge groups — namely SU(N) with N ≥ 3 — we

do need to worry about the gauge anomaly. But fortunately, the anomaly counting for such

theories is drastically simplified by the Theorem 2: If a simple Lie algebra does have a

cubic Casimir dabct̂
at̂bt̂c, then for any complete multiplet (m) of G and any 3 generators

t̂a, t̂b, t̂c,

tr(m)

(

{ta, tb}tc
)

= R3(m)× dabc (247)

where R3(m) is the cubic index depending only on the multiplet (m) but not on the particular

generators t̂a, t̂b, t̂c, while dabc depend on a, b, c but not on the multiplet. In fact, dabc are

the same totally-symmetric coefficients as the dabc in the construction of the cubic Casimir.

Note: eq. (247) applies to any complete multiplet (m), reducible or irreducible. And just

like the quadratic index R2, the cubic index R3 of a reducible multiplet is a sum of cubic

indices of its irreducible components:

for (m) = (m1) + (m2) + · · · , R3(m) = R3(m1) + R3(m2) + · · · . (248)

Thanks to this Theorem, for any kinds of a chiral gauge theory with an SU(N) gauge group,

trLHWF

(

{ta, tb}tc
)

= Rnet
3 (LHWF)× dabc,

trRHWF

(

{ta, tb}tc
)

= Rnet
3 (RHWF)× dabc,

(249)

and hence

Aabc =
(

Rnet
3 (LHWF) − Rnet

3 (RHWF)
)

× dabc. (250)

Consequently, we do not need to check the anomaly cancellation for all possible combinations

of the 3 adjoint indices a, b, c. Instead, all we need is to check the net cubic indices of the

LH and RH Weyl fermions and to check that

Rnet
3 (LHWF) − Rnet

3 (RHWF)
)

= 0. (251)

If this condition is satisfied, the SU(N) gauge theory is anomaly free; otherwise, it’s anoma-

lous and would not work at the quantum level unless we change its spectrum of the chiral

fermions.
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In simplify counting the cubic indices of various multiplets of SU(N) gauge groups, it’s

convenient to rescale them to the so-called anomaly indices

A(m)
def
=

R3(m)

R3(fundamental)
(252)

in practice A(m) is often easier to calculate then R3(m), and the anomaly cancellation

condition (251) can just as well be stated in terms of the A(m):

Anet = Anet(LHWF) − Anet(RHWF)
)

= 0. (253)

Let me give you the values of A of some commonly used SU(N) multiplets:

• A(fundamental) = +1, A(antifundamental) = −1, A(adjoint) = 0.

• The antisymmetric tensor multiplet ψij = −ψji has A = N − 4, the symmetric tensor

multiplet ψij = +ψji has A = N + 4.

⋆ More generally, any real or pseudo-real multiplet (m) — meaning, its complex conju-

gate multiplet (m∗) is equivalent to (m), — has A(m) = 0.

⋆ Any complex multiplet (m) and its complex conjugate (m∗) have anomaly indices of

equal magnitudes and opposite signs, A(m∗) = −A(m).

Note that a bunch of LH Weyl fermions ψiL in some multiplet (m) of the gauge symmetry

— plus their Hermitian conjugate fields ψ†Li which comprise the complex conjugate multiplet

(m∗) — are physically equivalent to the RH Weyl fermions ψRi in the (m∗) multiplet, plus

their conjugate fields (ψ†
R)

i in (m). Fortunately, both ways of representing these fermions

give exactly the same contribution to the net gauge anomaly:

ψL ∈ (m) contribute ∆Anet = +A(m),

ψR ∈ (m∗) contribute ∆Anet = −A(m∗) = +A(m).
(254)

With all of these rules in mind, let’s consider a specific example: the Grand Unified

Theory with the SU(5) gauge group. All the fermions of this theory are usually described in

terms of the LH Weyl fields ψL and their Hermitian conjugates ψ†
L, without any RH Weyl
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fields ψR or their conjugates ψR. Physically, the ψL account for the LH quarks and leptons

as well as LH antiquarks and antileptons, while the ψ†
L account for the RH antiquarks and

antileptons as well as RH quarks and leptons.

From the SU(5) point of view, all the fermions of the Standard Model belong to a

reducible multiplet

(m)net = 3× (10+ 5̄), (255)

where 5̄ is the antifundamental multiplet of SU(5) while 10 is the antisymmetric tensor

multiplet. By the above rules of anomaly counting,

A(5̄) = −A(5) = −1,

A(10) = (N = 5) − 4 = +1,
(256)

hence

Anet = 3×
(

A(10) + A(5̄)
)

= 3× (+1− 1) = 0. (257)

Thus, the SU(5) Grand Unified theory is anomaly free and is a perfectly good quantum field

theory. Too bad its phenomenology has been ruled out experimentally.

⋆ ⋆ ⋆

Now let’s turn our attention from the simple gauge groups to the product groups. In

particular, consider the Standard Model with G = SU(3)C × SU(2)W × U(1)Y .

For a product group, we can no longer reduce all the gauge anomaly to a single number

Anet; instead, we need to consider separate Aabc coefficients with different numbers of the 3

adjoint indices a, b, c belonging to specific factors of the gauge group. For a 3-factor group

like the Standard Model, there are 10 different ways to allocate the 3 indices to different

group factors, and we must make sure that the Aabc anomaly coefficients cancel for all these

10 allocations.

Fortunately, some allocations of the a, b, c indices to different factors lead to automat-

ically vanishing Aabc. For example, suppose one of the indices — say a — belongs to the

SU(3)C while the other two indices b and c belong to the electroweak factors SU(2)W×U(1)Y .
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In this case, for any multiplet (m) of the combined gauge group G, the ta generator acts on

the color index of the multiplet members (assuming they do have non-trivial colors) while

the tb and tc generators act on the other indices, whatever they might be. Thus,

tr(m)

(

ta{tb, tc}
)

= trcolors of (m)(t
a)× trother indicesof (m)

(

{tb, tc}
)

= 0× 2 trother indices(tbtc) = 0

(258)

because in all multiplets of the SU(3) group all the generators t̂a are represented by traceless

matrices, thus trcolors(t
a) = 0. Consequently, the trace (258) vanish for each and every

complete multiplet of the Standard Model’s gauge group, and therefore

Aabc = 0 when a ∈ SU(3)C but b, c 6∈ SU(3)C . (259)

Likewise, in all multiplets of the SU(2) group, all the generators are represented by the

traceless matrices, so a similar argument tells us that

Aabc = 0 when a ∈ SU(2)W but b, c 6∈ SU(2)W . (260)

Beyond the standard model, the same argument applies to all product gauge groups

G = G1 ×G2 × · · · (261)

where at least some of the Gi groups are non-abelian. For any multiplet of a simple non-

abelian group Gi, all matrices representing the Gi generators in that multiplet are traceless,

hence for a ∈ Gi while b, c 6∈ Gi, for any complete multiplet of the whole product group G,

trallindices
(

ta{tb, tc}
)

= trGi indices(t
a)× 2 trother indices(t

btc) = 0× whatever = 0 (262)

because tr(ta) = 0. Therefore,

Aabc = 0 whenever a ∈ (some non-abelian Gi) but b, c 6∈ (same Gi). (263)

Corollary: When all of the gauge group factors Gi are non-abelian, Aabc = 0 unless all 3

indices a, b, c belong to the same simple non-abelian factor. Moreover, if that factor is not
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an SU(N) with N ≥ 3 we would also get an automatic Aabc = 0; otherwise

Aabc = dabc[SU(N)]×Anet[WRT to that SU(N)factor]. (264)

Thus, to make sure all the anomalies cancel out, all we need to check are the net anomaly

indices WRT to all the SU(N ≥ 3) factors of G: If all such indices happen to vanish, then

the whole theory is anomaly free.

Now let’s go back to the Standard Model with G = SU(3)C × SU(2)W × U(1)Y . Since

one of the gauge group factors is abelian, checking for anomaly cancellation Aabc = 0 is a bit

more complicated: Besides checking the anomalies for a, b, c indices belonging to the same

factor — nonabelian or abelian — we should also check them for two indices belonging to

the same nonabelian factor while the third index belongs to the U(1). Altogether, we need

to check the Aabc for 5 types of a, b, c indices:

(1) All 3 indices a, b, c ∈ SU(3).

(2) All 3 indices a, b, c ∈ SU(2).

(3) Two indices a, b ∈ SU(3) but c ∈ U(1).

(4) Two indices a, b ∈ SU(2) but c ∈ U(1).

(5) All 3 indices a = b = c ∈ U(1).

For all other types of index combinations, the anomaly trivially vanishes and we do not need

to check it.

Actually, type (2) is also trivial because the SU(2) gauge group by itself is automatically

anomaly free — it has no cubic Casimir, and therefore in any multiplet of SU(2)

∀a, b, c ∈ SU(2) : tr
(

ta{tb, tc}
)

= 0. (265)

Consequently,

Aabc = 0 when a, b, c ∈ SU(2). (266)

Type (1) is not so trivial, but simple enough. Although the SU(3)C factor is not inherently

anomaly free, it happens to be vector-like when we focus on this factor by itself and disregard
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the electroweak SU(2) × U(1). That is, all the fermions of the Standard Model are either

leptons — which are neutral WRT to the SU(3)C or — Dirac quarks for which both LH and

RH Weyl component belong to the similar SU(3)C triplets. Consequently, QCD by itself is

free from the gauge anomaly, thus

Aabc = 0 when a, b, c ∈ SU(3). (267)

Moreover, in any extension of the Standard Model in which all colored particles get masses

— or could get masses without breaking the SU(3)C symmetry — the QCD viewed by itself

would be vector-like and therefore free from the gauge anomaly.

Next, type (3) of ta, tb being SU(3)C generators while tc is the U(1) generator Y . Clearly,

the leptons do not contribute to the traces involving the SU(3)C generators, while the quarks

contribute

trquarks
(

{ta, tb}Y
)

= 2 trcolors(t
atb)× trflavors = 2× 1

2δ
ab × trflavors(Y ) (268)

(where the second equality follows from quarks being color-triplets, hence tr3(t
atb) = 1

2δ
ab),

and therefore

AabY = δab ×







∑

LHquark

flavors

Y −
∑

RHquark

flavors

Y






. (269)

In the Standard Model, each family has 2 LH quark flavors (in a doublet of SU(2)W ) with

hypercharge Y = +1
6 and 2 RH quark flavors with hypercharges Y = +2

3 and Y = −1
3 .

Thus,
∑

LHquark

flavors

Y = 3families × 2×
+1

6
= +1,

∑

RHquark

flavors

Y = 3families ×

(

+2

3
+

−1

3

)

= +1,

(270)

and this cancels all the case (3) anomalies,

for a, b ∈ SU(3) and tc = Y, Aabc = 0. (271)

More generally, the same results obtains in all extensions of the Standard Model where
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the electroweak symmetry SU(2)W × U(1)Y is Higgsed down to the electromagnetic U(1)

where the unbroken electric charge (in units of e) is Q = t3[SU(2)]+Y . Since the t3 generator

of the SU(2) is traceless, this means

∑

LHquark

flavors

Y =
∑

LHquark

flavors

Q,
∑

RHquark

flavors

Y =
∑

RHquark

flavors

Q, (272)

and in any model where all quark flavors are massive — or could get mass without breaking

the electromagnetic U(1) symmetry — the electric charge Q must be vector-like, hence

∑

LHquark

flavors

Y =
∑

LHquark

flavors

Q =
∑

RHquark

flavors

Q =
∑

RHquark

flavors

Y (273)

and therefore vanishing case (3) anomalies,

for a, b ∈ SU(3) and tc = Y, Aabc = 0. (274)

Unlike the anomaly types (1), (2), and (3) — which cancel automatically for vector-like

SU(3)C×U(1)EM, — the remaining anomaly types (4) and (5) cancel only when the electric

charges of all quarks and leptons add up to zero,

∑

quarks,

leptons

Qel = 3colors ×
∑

quark

flavors

Qel +
∑

lepton

species

Qel = 0. (275)

Fortunately, this is indeed the case in real life:

3×
(

3×
+2

3
+ 3×

−1

3

)

+
(

3×−1 + 3× 0
)

= 0. (276)

Indeed, let’s check type (4): a, b ∈ SU(2)W while tc = Y . Since all the RH quark and

leptons are SU(2) singlets, we immediately have

trRHWF

(

{ta, tb}Y
)

= 0. (277)

As to the LH quarks and leptons, they all belong to the SU(2) doublets, hence

AabY = trLHWF

(

{ta, tb}Y
)

= 2 tr2(t
atb)×trLHdoublets(Y ) = δab×trLHdoublets(Y ). (278)

So the type (4) anomaly cancels if and only if the hypercharges of all the LH quark and

lepton doublets add up to zero. And in real life, they do: all the LH quarks have Y = +1
6
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while the LH leptons have Y = −1
2 , and there are 3×3colors = 9 quark doublets and 3 lepton

doublets, thus

trLHdoublets(Y ) = 9×
+1

6
+ 3×

−1

2
= 0. (279)

In terms of the electric charges,

trLHdoublets(Y ) = 1
2 trLHWF(Y )

= 1
2 trLHWF(Qel) − 1

2 trLHWF(t
3[SU(2)W ])

= 1
2 trLHWF(Qel) − 0 〈〈 because t3[SU(2)] is traceless 〉〉

= 1
2 trDirac fermions(Qel) 〈〈 because Qel is vector-like 〉〉.

(280)

Thus, the type (4) anomalies cancel out if and only if the electric charges of the quarks and

leptons are related to each other such that

∑

quarks,

leptons

Qel = 0, (281)

which is exactly the condition (275).

Finally, consider the type (5) anomaly

AY Y Y = 2 trLHWF(Y
3) − 2 trRHWF(Y

3). (282)

Let’s re-express this anomaly in terms of particles’ electric charges. All the LH quarks and

leptons belong to SU(2)W doublets, so for any such doublet of hypercharge Y = y, the two

LH particles have electric charges

Qel = Y + t3[SU(2)] = Y ± 1
2 . (283)

But the electric charge is non-chiral, so for any charged LH fermion there is a RH fermion

with the same electric charge; and since the RH quarks and leptons are SU(2)W singlets,

their hypercharges must be equal to their electric charges Y = y ± 1
2 . Altogether, we have
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2 LH Weyl fermions of hypercharge y and 2 RH Weyl fermions of hypercharges y ± 1
2 , and

between these 4 Weyl fermions

trLH(Y
3) − trRH(Y

3) = 2y3 − (y + 1
2)

3 − (y − 1
2)

3 = −3
2y. (284)

The net AY Y Y anomaly obtains as a sum of such contributions (284) from all such sets of 2

LH and 2 RH Weyl fermions.
⋆
Thus,

AY Y Y = −3
∑

LHdoublets

y = −3
2

∑

quarks,

leptons

Qel . (285)

Similar to the type (4) anomalies, the AY Y Y cancels out only when the electric charges of

all the quarks and all the leptons add up to zero.

Conclusions

Let me conclude these notes with a few general statements about anomalies of both

gauge and global symmetries. In 4D, all such anomalies are proportional to the

Aabc = trLHWF

(

ta{tb, tc}
)

− trRHWF

(

ta{tb, tc}
)

: (286)

For the anomalies of global symmetry ta is its generator while tb, tc are generators of the

gauge group, while for the anomalies of gauge symmetry all 3 ta, tb, tc are gauge group

generators. A point of terminology:

• Anomalies of global symmetries are called abelian anomalies because only an abelian

factor of the net global symmetry can suffer from such anomaly. For example, in

QCD with Nf massless flavors, only the abelian U(1)A factor of the global U(Nf )L ×

U(Nf )R chiral symmetry is anomalous, while the remaining SU(Nf )L × SU(Nf )R ×

U(1)V factors are anomaly-free. For another example, consider the Standard–Model-

like theory without the Yukawa couplings (and hence having exactly massless quarks

⋆ For simplicity, I assume the RH neutrinos exist, so I count the leptons of each family as 2 LHWF and
2 RHWF. But since the RH neutrinos have Y = 0, it does not matter if they exist or not as their
contribution to eq. (284) and hence the net AY Y Y anomaly would be nil.
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and leptons). Classically, this theory has a [U(3)]5 global family symmetry which

mixes Weyl fermions of similar gauge quantum numbers with each other. Some of

the abelian U(1) factors of this symmetry — for example the lepton number and the

baryon number — suffer from the SU(2)W anomaly, but all of the SU(3) factors are

anomaly free.

To see why this should be true in a general case, suppose the net global symmetry of

some gauge theory has a simple non-abelian factor H , and let ta be a generator of this

H . Then for any complete multiplet (m) of H , tr(m)(t
a) = 0. Consequently, for any

complete multiplet of the combined for any multiplet of the combined gauge× global

symmetry and any two generators tb, tc of the gauge group,

tr
(

ta{tb, tc}
)

= trglobalindices(t
a)× 2 trgaugeindices(t

btc) = 0× whatever = 0. (287)

Applying this formula to the complete sets of the LH and RH Weyl fermions of the

theory, we immediately obtain Aabc = 0. Thus, all the non-abelian simple factors of

the global symmetry group are always anomaly free.

• On the other hand, anomalies of the gauge symmetries themselves are called nonabelian

anomalies, even when the gauge theory happens to be abelian.

Finally, a couple of very useful rules for calculating anomaly coefficients Aabc and check-

ing for the anomaly cancellation. Let G be the relevant symmetry group — the gauge group

for a nonabelian anomaly or the gauge × global group for the abelian anomaly. Lemma:

for any complete multiplet (m) of G and any 3 G generators ta, tb, tc,

tr(m∗)

(

ta{tb, tc}
)

= − tr(m)

(

ta{tb, tc}
)

. (288)

In particular, if the multiplet (m) happens to be real or pseudo-real,

∀(m) ∼= (m∗) : tr(m)

(

ta{tb, tc}
)

= 0. (289)

Physically, this Lemma immediately tells us that for the purpose of calculating a G anomaly

Aabc, a multiplet (m) of LH Weyl fermions ψiL is equivalent to a complex-conjugate multiplet
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(m∗) of RH Weyl fermions ψRi = (ψiL)
†. Indeed, either multiplet contributes

∆Aabc = + tr(m)

(

ta{tb, tc}
)

= − tr(m∗)

(

ta{tb, tc}
)

. (290)

Moreover, the Lemma (288) leads to the following Theorem: the massive fermions — or

the fermions which can be given mass terms without breaking the relevant symmetry G —

cancel out from the anomalies. Instead, the Aabc come solely from the fermions which cannot

be given any G-invariant masses.

To prove this theorem, let’s treat all the fermions of the theory as a reducible multiplet

of LH Weyl fermions. In matrix notations, the fermionic Lagrangian has general form

Lψ = iψ†
Lσ̄

µDµψL − 1
2ψ

⊤
Lσ2MψL − 1

2ψ
†
Lσ2M

∗ψ∗
L (291)

for some complex symmetric mass matrix M . By assumption, the mass terms are invariant

under all the relevant symmetries of the theory, which restricts the non-zero matrix elements

Mij 6= 0 to the following Dirac and Majorana masses:

• A Dirac mass term Mij 6= 0 connects LH Weyl fermions ψiL in some complex multiplet

(m) to ψjL in a complex-conjugate multiplet (m∗) and vice verse. By the lemma (288),

the net contribution of the two multiplets (m) + (m∗) to the anomaly cancels out,

∆Aabc = 0.

• A Majorana mass term Mij 6= 0 connects two LH Weyl fermions ψiL and ψjL in the

same real multiplet (m) ∼= (m∗). By the lemma (289), such real multiplets do not

contribute to the anomaly, ∆Aabc = 0.

Altogether, the massive fermions — or any fermions which can be given Dirac or Majorana

masses without breaking the relevant symmetries — cancel out from all the anomalies,

∆massiveA
abc = 0. Instead, the entire anomaly comes from the massless fermions which can

be given G-invariant masses,

Aabc
net = Aabc

massless . (292)

Thanks to this Theorem, the gauge anomaly cancellation in the Standard Model would

not be affected by any additional superheavy fermions we have not yet discovered experimen-

tally. Indeed, suppose there are some superheavy fermions with non-trivial SU(3)×U(2)×
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U(1) quantum numbers. In light of the LHC unsuccessful searches for such particles, their

masses should be larger than about 2 TeV for colored particles and 200 GeV for particles

without colors. Now consider 3 possible origins for such large masses:

1. Yukawa couplings to the Standard Model’s Higgs VEV. In this case, the Yukawa cou-

plings should be rather large, and they would affect the precision electroweak measure-

ments at LEP, Fermilab, and LHC. Since no such effects were observed experimentally,

we may rule out this scenario.

2. Bare mass terms in the Standard Model’s Lagrangian. In this case, the mass terms

must be invariant under SM gauge symmetry, so by the Theorem, the contribution of

all such massive fermions to the Standard Model’s anomalies Aabc cancel out.

3. At very high energies there is a bigger gauge symmetry then the SU(3)×SU(2)×U(1),

but at some energy scale MH ≫ 100 GeV it’s Higgsed down to the SU(3)× SU(2)×

U(1). The Higgs VEV involved in this process may have Yukawa couplings to some

fermions, and that would give them O(MH) masses. In this scenario, the masses of the

heavy fermions would be invariant under the un-broken SU(3)× SU(2)× U(1) gauge

symmetry group, so by the Theorem, the contributions of these heavy fermions to the

SU(3)× SU(2)× U(1) anomalies would cancel out,

∆heavyA
abc = 0 for a, b, c ∈ SU(3)× SU(2)× U(1). (293)

Note: for ta, tb, tc belonging to the Higgsed down symmetry generators outside the

Standard Model, the anomaly contribution from the heavy fermions might not cancel

out. But that would be a problem for our attempt at the BSM model building, not

for the Standard Model itself.

A similar argument applies to the abelian anomalies of the Standard Model’s global

symmetries such as lepton or baryon numbers. For any superheavy BSM fermions whose

masses do not break either the SM gauge symmetries or the global symmetries in question,

their contributions to the abelian anomalies in question would cancel out. For example, as

long as the superheavy fermions’ masses do not break baryon or lepton numbers, they would

70



not affects the anomalous violation of these numbers by

∆B = ∆L = 3× Index[FSU(2)]. (294)

Note: this rule does not apply to the sterile neutrinos N1,2,3 involved in the see-saw mecha-

nism because their large Majorana masses break the lepton number symmetry.

This concludes my notes on the anomalies. If I have any time left in this class to discuss

other anomaly-related issues, I shall use the blackboard or rather the document camera.
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