
BRST Symmetry of QCD

The BRST symmetry — named after its discoverers Carlo Becchi, Alain Rouet, Ray-

mond Stora, and Igor Tyutin — relates the ghosts and the longitudinal gluons to each other

and makes sure that they always cancel each other out from all physical processes.

Before we spell out the action of the BRST symmetry, let’s write the QCD Lagrangian

as

L = Lphysical + Lgauge fixing
and ghosts , (1)

Lphysical = −1
4F

a
µνF

aµν +
∑
f

Ψfi(i6D +mf )Ψfi, (2)

Lgauge fixing
and ghosts = ∂µc̄

cDµc
a + 1

2ξ(b
a)2 − ba∂µAaµ . (3)

The ba(x) here are auxiliary fields: For ξ = 0 they are Lagrange multipliers for the Landau

gauge condition ∂µAaµ = 0, while for ξ 6= 0 we may eliminate the ba by their non-derivative

equations of motion ξba = ∂µAaµ, which then brings the gauge-fixing terms to their standard

form −(1/2ξ)(∂µAaµ)2. The ca(x) are the ghost fields and the c̄a(x) are the anti-ghost fields;

despite the names, their quanta are not antiparticles of each other, and there is no charge-

conjugation-like symmetry exchanging ca ↔ c̄a. In particular, the quantum ĉa and ˆ̄c
a

fields

are not hermitian conjugates of each other. However, the ghosts and the antighosts do have

opposite charges under the global U(1)ghost symmetry

ca(x) → e+iθ × ca(x), c̄a → e−iθ × c̄a(c), other fields unchanged; (4)

the corresponding conserved charge G is called the ghost number.
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In component-field notations, the BRST symmetry acts as

δΨfi(x)) = ε
{
Q,Ψfi(x)

}
= gε ca(x)(ta)ijΨ

fj(x), (5.a)

δΨfi(x)) = ε
{
Q,Ψfi(x)

}
= gεΨfj(x)(ta)jic

a(c), (5.b)

δAaµ(x) = ε
[
Q,Aaµ(x)

]
= iεDµc

a(x) = iε ∂µc
a(x) − igεfabcAbµ(x)cc(x), (5.c)

δca(x) = ε
{
Q, ca(x)

}
= igε fabc cb(x)cc(x), (5.d)

δc̄a(x) = ε
{
Q, c̄a(x)

}
= −iε ba, (5.e)

δba(x) = ε
[
Q, ba(x)

]
= 0, (5.f)

where ε is an ‘infinitesimal’ odd Grassmann number and Q is the fermionic operator gen-

erating the BRST symmetry. Under the U(1)ghost, Q has ghost number G = +1. Note

that the ε parameter is x–independent, so the BRST symmetry is global rather than local.

Also, despite having a fermionic generator Q, the BRST symmetry is completely unrelated

to supersymmetry.

As written, the action of the BRST symmetry depends on the gauge coupling g, but we

may eliminate this dependence by rescaling the gauge and ghost fields. At the same time,

let us also switch to matrix notations for all the adjoint fields, thus

Aµ = g
∑
a

Aaµt
a, C = g

∑
a

cata, C = g
∑
a

c̄ata, B = g
∑
a

bata, (6)

Consequently,

DµΨ(x) = ∂µΨ(x) + iAµ(x)Ψ(x),

DµC(c) = ∂µC(x) + i[Aµ(x), C(x)],

Fµ,ν(x) = ∂µAν(x) − ∂νAµ(x) + i[Aµ(x),Aν(x)],

(7)

the Lagrangian becomes

Lphys =
−1

2g2
tr (FµνFµν) +

∑
f

Ψf (i6D +m)Ψf , (8)

Lgf+gh =
2

g2
tr

(
∂µCDµC +

ξ

2
B2 − B∂µAµ

)
, (9)
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the infinitesimal gauge transforms U(x) = 1 + iΛ(x) act as

δΨ = iΛΨ, δΨ = −iΨΛ, δAµ = −DµΛ, δC = i[Λ, C], δC = i[Λ, C], δB = i[Λ,B],

(10)

and the BRST symmetry acts as

δΨ(x) = ε
{
Q,Ψ(x)

}
= ε C(x)Ψ(x), (11.a)

δΨ(x) = ε
{
Q,Ψ(x)

}
= εΨ(x)C(x), (11.b)

δAµ(x) = ε
[
Q,Aµ(x)

]
= iεDµC(x), (11.c)

δC(x) = ε
{
Q, C(x)

}
= ε C(x)C(x), (11.d)

δC(x) = ε
{
Q, C(x)

}
= −iεB(x), (11.e)

δB(x) = ε
[
Q,B(x)

]
= 0. (11.f)

Note that thanks to the matrix structure of the fermionic C(x) field, its square on the

RHS of eq. (11.d) does not vanish; instead, C(x)C(x) = 1
2{C(x), C(x)} = g2[tbtc]cbcc =

ig2ta × fabccb(x)cc(x), which is properly antisymmetric in the fermionic ghost fields.

As far as the quark and the gluon fields are concerned, their BRST transforms (11.a–c)

look like infinitesimal gauge transforms for

Λ(x) = −iε C(x). (12)

Consequently, the gauge invariance of the physical QCD Lagrangian (8) immediately makes

it BRST invariant, [
Q,Lphys

]
= 0. (13)

But the gauge fixing and the ghost terms (9) in the quantum Lagrangian are not gauge

invariant, so proving their BRST symmetry is more complicated. I will do that in a moment,

but first let me address another issue, the nilpotency of the BRST operator Q.

Theorem: The BRST operator Q is nilpotent, Q2 = 0.

To prove this theorem, we first show that Q2 = 1
2{Q,Q} commutes with all the fields; by
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the Leibniz rules for the (anti) commutator, this means

{Q, [Q, any bosonic field]} = 0 and [Q, {Q, any fermionic field}] = 0. (14)

Let’s verify these double-commutator formulae field by field. Obviously

{Q, [Q,B]} = 0 and [Q, {Q, C}] = [Q,B] = 0. (15)

Less obviously but still rather simply

[Q, {Q,Ψ}] = [Q, CΨ] = {Q, C}Ψ − C{Q,Ψ} = +CCΨ − CCΨ = 0, (16)

and similarly

[Q, {Q,Ψ}] = [Q,ΨC] = {Q,Ψ}C − Ψ{Q, C} = +ΨCC − ΨCC = 0. (17)

Likewise

[Q, {Q, C}] = [Q, CC] = {Q, C}C − C{Q, C} = CCC − CCC = 0. (18)

Finally, the gauge field Aµ takes a bit of algebra:

{Q, [Q,Aµ]} = i{Q,DµC} = i[Q,Dµ]C + iDµ{Q, C}

= −{[Q,Aµ], C} + iDµ(CC) = −i{DµC, C} + i{DµC, C} = 0.
(19)

The bottom line of this exercise is that the operator Q2 commutes with all the quantum

fields of QCD. Consequently, in the Hilbert space of QCD, this operator either vanishes or

acts as a c-number constant. But since Q2 has a non-zero ghost number (namely +2), it

cannot act as a constant, so it must vanish. Quod erat demonstrandum.
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Having proved the nilpotency of the BRST operator, the simplest way to establish that

the ghost and gauge fixing terms in QCD Lagrangian are BRST symmetric is to show that

Lgf+gh = {Q,Z} (20)

for some fermionic operator Z. Indeed, given eq. (20), we would immediately have

[
Q,Lgf+gh

]
= [Q, {Q,Z}] = [Q2, Z] = 0 by nilpotency of Q. (21)

To verify eq. (20), we take

Z =
2i

g2
tr

(
C ×

(
ξ

2
B − ∂µAµ

))
. (22)

Anticommuting this operator with Q we obtain

{Q,Z} =
2i

g2
tr

(
{Q, C} ×

(
ξ

2
B − ∂µAµ

)
− C ×

[
Q,

(
ξ

2
B − ∂µAµ

)])
=

2i

g2
tr

(
−iB ×

(
ξ

2
B − ∂µAµ

)
− C × (0 − i ∂µDµC)

)
=

2

g2
tr

(
ξ

2
B2 − B∂µAµ − C∂µDµC

)
= Lgf+gh (up to a total derivative),

(23)

which proves the BRST symmetry of the gauge-fixing and ghost parts of the QCD action.

And as I have argued a couple of pages above, the classical QCD action is BRST symmetric

because of its gauge invariance.

BRST Symmetry in the Fock Space

Quantization of QCD via the path integral

Z[sources] =

∫∫∫
D[Aaµ(x)]

∫∫∫
D[ca(x)]

∫∫∫
D[c̄a(x)]

∫∫∫
D[Ψfi(x)]

∫∫∫
D[Ψfj(x)] exp

(
−Se

)
(24)

leads to the Fock space F for quanta of all the fields appearing in the path integral, including

both the physical and the un-physical particles.
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• Physical particles: quarks, antiquarks, and transversely polarized gluons.

• Unphysical particles: ghosts, antighosts, and longitudinally polarized gluons.

Indeed, in perturbation theory, the interaction-picture quantum vector field decomposes as

Âaµ(x) =

∫
d3p

(2π)32Ep

∑
λ

(
e−ipx eµ(p, λ)× â(p, λ, a) + e+ipx e∗µ(p, λ)× â†(p, λ, a)

)
, (25)

and since we do not want the Âaµ(x) to be restricted by any gauge conditions, we should

include both the transverse and the longitudinal polarizations λ. Consequently, the Fock

space of the theory includes the longitudinal gluons created by the â†(p, L, a). Likewise,

the ghosts fields ca(x) and the antighost fields c̄a(x) expand into fermionic creation and

annihilation operators

ca(x) =

∫
d3p

(2π)32Ep

(
e−ipx × â(gh, p, a) + e+ipx × â†(gh, p, a)

)
,

c̄a(x) =

∫
d3p

(2π)32Ep

(
e−ipx × â(agh, p, a) + e+ipx × â†(gh, p, a)

)
,

(26)

and the Fock space must include the ghost and the antighost states created by the â†(gh, p, a)

and the â†(agh, p, a).

Unlike the physical Fock spaces we have studies earlier in class, the QCD Fock space F
has a Hilbert norm of mixed signature:

〈phys|phys〉 > 0, 〈gL|gL〉 > 0, but 〈gh|gh〉 < 0, and 〈agh|agh〉 < 0. (27)

Indeed, since the ghost and antighost fields violate the spin-statistics theorem — they are

fermions despite spin = 0 — their quanta has negative Hilbert norms. Fortunately, we may

use the BRST operator Q̂ to reduce the formal Fock space F to the physical Hilbert space

H which has a positive-definite norm.

Mathematically, a nilpotent operator like Q̂ defines a cohomology — the kernel of Q̂

modulo its image. Note that Q̂2 = 0 means that

if |ψ1〉 = Q̂ |ψ2〉 then Q̂ |ψ1〉 = 0, (28)

but on the other hand, Q̂ |ψ1〉 = 0 does not require |ψ1〉 = Q̂ |ψ2〉 for some |ψ2〉 ∈ F .

Mathematically speaking, the kernel of Q̂ in F includes the image of Q̂, but there are more
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states in the kernel than just the image; it is those extra states — annihilated by Q̂ but not

obtaining from Q̂ acting on other states — which form the cohomology

HQ =
{
|ψ〉 ∈ F such that Q |ψ〉 = 0

}
modulo states of the form Q

∣∣ψ′〉 . (29)

The BRST operator Q̂ is pseudo-Hermitian WRT the mixed-signature Hilbert norm (27) in

the Fock space F . Consequently, in that metric all states of the form Q̂ |ψ′〉 are orthogonal

to all states ψ annihilated by Q̂:

if Q̂ |ψ〉 = 0 then ∀
∣∣ψ′〉 , 〈ψ| Q̂

∣∣ψ′〉 = 0. (30)

However, the mixed-signature Hilbert norm in F allows for null states with
〈
ψ̃|ψ̃

〉
= 0, and

such states cannot be eliminated by an orthogonal projection. In fact, by nilpotency of Q̂ all

states of the form Q̂ |ψ′〉 are null — 〈ψ′| Q̂Q̂ |ψ′〉 = 0 — and that’s why we need the second

condition in the definition (29). Technically, the states of HQ are the equivalence classes

In HQ , |ψ〉 ∼= |ψ〉 + Q
∣∣ψ′〉 ∀

∣∣ψ′〉 ∈ F . (31)

By way of analogy, consider defining the subspace of transverse polarization vectors eµ

for a null (i.e., light-like) momentum vector kµ, k2 = 0. In 3D terms, we may simply define

the transverse eµ as purely spatial vectors (0, ~e) perpendicular to ~k, but this presumes a

particular Lorentz frame for the 4D Minkowski space. Without a specific rest frame, we

need the more subtle equivalence-class construction:

V⊥k =
{

space of eµ such that eµkµ = 0
}

modulo eµ ∼= eµ + number× kµ. (32)

Note that the metric in this equivalence class is well defined:

eµ1kµ = eµ2kµ = 0 =⇒ ∀c1, c2, (eµ1 + c1k
µ)(e2µ + c2kµ) = eµ1e2µ . (33)

Likewise, the Q̂–cohomology (31) has a well-defined Hilbert norm:

Q̂ |ψ1〉 = Q̂ |ψ2〉 = 0 =⇒ ∀
∣∣ψ′1〉 , ∣∣ψ′2〉 , (

〈ψ1|+
〈
ψ′1
∣∣ Q̂)(|ψ2〉+ Q̂

∣∣ψ′2〉) = 〈ψ1|ψ2〉 .
(34)

Actually, this norm is positive definite in HQ, but I am not going to prove it here.
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In perturbation theory, the BRST operator Q relates the longitudinal gluons to the

ghosts and antighosts. Indeed, let’s take the free-field limit g → 0 in which the quantum

fields expand into creation and annihilation operators as in eqs. (25) and (26). In this g → 0

limit, the BRST symmetry action (5) reduces to

[
Q̂, Âaµ(x)

]
= −∂µĉa(x),

{
Q̂, ˆ̄c

a
(x)
}

= b̂a(x) =
1

ξ
∂µÂaµ(x). (35)

Expanding the fields into creation and annihilation operators, we obtain∑
λ

e∗µ(p, λ)×
[
Q̂, â†(gluon, p, λ, a)

]
= −ipµ × â†(ghost, p, a),

{
Q̂, â†(antighost, p, a)

}
= − i

ξ

∑
λ

pµeµ(p, λ)× â†(gluon, p, λ, a),
(36)

and likewise for the annihilation operators. In terms of single-particle states, these relations

translate to

Q̂ |gluon : p, L+, a〉 = −i
√

2p0 × |ghost : p, a〉 ,

Q̂ |antighost : p, a〉 = − ip0√
2ξ
× |gluon : p, L−, a〉 ,

(37)

where L+ and L− denote two distinct longitudinal polarizations of a gluon,

eµ(L+) =
(p0,+p)√

2p0
, eµ(L−) =

(p0,−p)√
2p0

. (38)

Altogether, out of 4 unphysical single-particle states (for given momentum pµ and adjoint

color a), two states — the L+ gluon and the antighost — do not obey Q̂ |ψ〉 = 0, while the

other 2 states — the L− gluon and the ghost — obtain as |ψ〉 = Q |ψ′〉 for some |ketψ′.
Thus, none of these unphysical states belongs to the BRST cohomology HQ.

At the same time, in the g → 0 limit the BRST transformations do not affect the quark

and antiquark fields or the transverse modes of the vector fields, hence

Q̂ |quark〉 = 0, Q̂ |antiquark〉 = 0, Q̂ |gluon : T 〉 = 0. (39)

In other words, all the physical one-particle states obey Q̂ |ψ〉 = 0. Also, none of these states

obtains from Q̂ acting on some other quantum state |ψ′〉. Thus, the physical one-particle

states do belong to the HQ.
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Altogether, among the one-particle states of the free theory, the BRST cohomology

comprises all the physical states and none of the unphysical states. Using the action of

Q̂0 on the creation and annihilation operators, we may extend this result to all the multi-

particle states in the Fock space F : the physical states of the free theory comprise the HQ
cohomology. Or rather, they comprise the H(0)

Q — the subspace of HQ made from states of

net ghost number G = 0. In terms of the original Fock space F , we first decompose it into

eigenspaces of specific net ghost numbers

F =
+∞⊕
G=−∞

FG (40)

connected by the BRST operator Q̂ — which always raises G by 1 —

· · · Q̂−→ F−2
Q̂−→ F−1

Q̂−→ F0
Q̂−→ F+1

Q̂−→ F+2
Q̂−→ · · · (41)

In this decomposition, we define the H(0)
Q cohomology as

H(0)
Q =

{
|ψ〉 ∈ F0 such that Q̂ |ψ〉 = 0

}
modulo |ψ〉 ∼= |ψ〉 + Q̂

∣∣ψ′〉 ∀
∣∣ψ′〉 ∈ F−1 .

(42)

For the interacting theory with g 6= 0 the particle states become more complicated, and

the Q̂ operator itself also becomes more complicated. Nevertheless, the Q̂–cohomology H(0)
Q

comprises all the physical states of the interacting theory and only the physical states. Note

that BRST is an exact symmetry of QCD, so Q̂ commutes with the Hamiltonian Ĥ and

hence with the S-matrix (the scattering operator). Thus, if the asymptotic incoming state

|in〉 is annihilated by the Q̂, then the asymptotic outgoing state Ŝ |in〉 is also annihilated by

the Q̂. Moreover, the S-matrix restricted to the H(0)
Q is well defined and unitary: For any

|A〉 , 〈B| ∈ H(0)
Q ,

〈B| Ŝ |A〉 =
〈
B′
∣∣ Ŝ ∣∣A′〉 ∀ |A′〉 = |A〉+ Q̂ |whatever〉 ,

∀ 〈B′| = 〈B|+ 〈whatever| Q̂,
(43)

and ∑
|C〉∈H(0)

Q

〈B| Ŝ† |C〉 × 〈C| Ŝ |A〉 = 〈B|A〉 . (44)

One should be careful interpreting the H(0)
Q as the physical Hilbert space of QCD in
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terms of the Feynman amplitudes M. The processes turning physical incoming particles

into unphysical outgoing particles are not forbidden. Indeed, in the previous set of notes we

obtained non-zero amplitudes M(q + q̄ → gLgL) and M(q + q̄ → gh + agh) for turning a

quark and an antiquark into two longitudinal gluons or a ghost and an antighost. However,

when we look at the net final state of the q + q̄ annihilation,

Ŝ |q + q̄〉 = |q + q̄〉 + |gT + gT 〉 + |gL + gL〉 + |gh + agh〉 + |3 or more quanta〉 (45)

the unphysical component of this state is of the form Q̂ |something〉,

|gL + gL〉 + |gh + agh〉 = Q̂ |gL + agh〉 (46)

and likewise for the unphysical states involving 3 or more quanta. Thus, in the H(0)
Q space,

the final state of annihilation is equivalent to a purely physical state,

Ŝ |q + q̄〉 ∼= |q + q̄〉 + |gT + gT 〉 + |3 or more physical particles〉 . (47)

As to the unitarity of the S-matrix in the H(0)
Q space, it means that we may calculate the net

cross-sections (or net partial cross-sections dσ/dΩ) counting only the physical final particles

— the contributions of the longitudinal gluons and the ghosts cancel each other. For example,

in the previous set of notes we saw that

M(q + q̄ → gL + gL) = M(q + q̄ → gh + agh) (48)

— and now we know that this relation follows from the BRST symmetry via eq. (46).

Consequently, the two unphysical processes cancel each other from the net cross-section,

dσ(q + q̄ → · · ·)
dΩ

=
|〈gT + gT |M |q + q̄〉|2

64π2s

+
|〈gL + gL|M |q + q̄〉|2

64π2s

/
− |〈gh + agh|M |q + q̄〉|2

64π2s

/
,

(49)

and we are left with the cross-section for producing only the physical particles.
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