
Calculating a One-Loop Amplitude

In these notes I explain the basic tools for calculating loop diagrams. For simplicity, let us

stick to the λΦ4 theory with a single real scalar and focus on the elastic 2-particle amplitude

M(1 + 2 → 1′ + 2′). At the tree level, only one diagram

1 2

1′ 2′

(1)

contributes to this scattering, hence

Mtree = −λ ∀s, t, u. (2)

At the one-loop level, there are 3 diagrams — or rather, 3 connected diagrams without external

leg bubbles, — namely

(3)

These 3 diagrams are related to each other by crossing symmetries, and each one diagram

depends on only one Mandelstam’s invariant — s, t, or u — of the external momenta, so

altogether we have

M1 loop(s, t, u) = F(s) + F(t) + F(u) (4)

for the same analytic function F .
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To calculate this function, let us focus on the t-channel diagram

p1 p2

p′1 p′2

q1

q2

(5)

By momentum conservation in each vertex, we have

q1 + q2 = qnet = p1 − p′1 = p′2 − p2 , q2net = t. (6)

Hence, evaluating the diagram (5), we have

iF(t) =
1

2
× (−iλ)2 ×

∫

d4q1
(2π)4

i

q21 −m2 + iǫ
×

i

(q2 = qnet − q1)2 −m2 + iǫ
(7)

where 1
2 is the combinatorial factor due to permutation symmetry of the 2 propagators. Note:

at very large loop momenta, the integral in eq. (7) behaves as

∫

d4q1
(2π)4

1

(q21)
2
, (8)

which diverges for qµ1 → ∞. Therefore, the momentum integral must be regulated to avoid this

divergence, and I shall the regulation in detail later in these notes. For the moment, let us

simply write down

F(t) =
−iλ2

2

∫

reg

d4q1
(2π)4

1

q21 −m2 + iǫ
×

1

(q2 = qnet − q1)2 −m2 + iǫ
(9)

where reg denotes that the integral is somehow regulated without going into the specifics.
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Feynman’s parameter trick

Our calculation of the integral (9) begins with the Feynman’s parameter trick: Any product

of 2 complex numbers — or rather, their inverses 1/A and 1/B can be written as the integral

1

A
×

1

B
=

1
∫

0

dξ
1

[(1− ξ)A+ ξB]2
(10)

where the (1 − ξ)A + ξB factor in the integral linearly interpolates between A and B. The

identity (10) — and many similar identities involving more complicated products — can be

easily verified by taking the integral on the RHS, so let me leave it for your homework (problem

1 of the current set#13). Applying the identity (10) to the product of the two propagators in

the integrand of eq. (9), we have

1

q21 −m2 + iǫ
×

1

q22 −m2 + iǫ
=

1
∫

0

dξ

[(1− ξ)(q21 −m2 + iǫ) + ξ(q22 −m2 + iǫ)]2

=

1
∫

0

dξ

[(1− ξ)q21 + ξq22 −m2 + iǫ]2

(11)

and hence

F(t) =
−iλ2

2

∫

reg

d4q21
(2π)4

1
∫

0

dξ

[(1− ξ)q21 + ξq22 −m2 + iǫ]2

=
−iλ2

2

1
∫

0

dξ

∫

reg

d4q21
(2π)4

1

[(1− ξ)q21 + ξq22 −m2 + iǫ]2
.

(12)

In the denominator of the integrand here

(1− ξ)q21 + ξq22 = (1− ξ)q21 + ξ(qnet − q1)
2

= (1− ξ)q21 + ξq21 − 2ξ(q1qnet) + ξq2net

= (q1 − ξqnet)
2 + (ξ − ξ2)q2net,

(13)
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hence

(1− ξ)q21 + ξq22 − m2 + iǫ = (q1 − ξqnet)
2 − ∆(ξ) + iǫ (14)

where

∆(ξ)
def
= m2 − (ξ − ξ2)q2net = m2 − ξ(1− ξ)t, (15)

and therefore

F(t) =
−iλ2

2

1
∫

0

dξ

∫

reg

d4q21
(2π)4

1

[(q1 − ξqnet)2 −∆(ξ) + iǫ]2
. (16)

In the inner integral here, ξ is fixed while we integrate over the qµ1 , so we may shift the

integration variable from the qµ1 to

kµ = qµ1 − ξqµnet . (17)

Obviously, this variable shift has unit Jacobian, thus

∫

d4q21
(2π)4

1

[(q1 − ξqnet)2 −∆(ξ) + iǫ]2
=

∫

d4k

(2π)4
1

[k2 −∆(ξ) + iǫ]2
. (18)

Or rather,

∫

reg

d4q21
(2π)4

1

[(q1 − ξqnet)2 −∆(ξ) + iǫ]2
=

∫

reg

d4k

(2π)4
1

[k2 −∆(ξ) + iǫ]2
, (19)

provided such variable shift does not screw up the regulator which makes the integral finite. But

let us assume our regulator does allow such variable shift, then we may write the amplitude in

question as

F(t) =
−iλ2

2

1
∫

0

dξ

∫

reg

d4k

(2π)4
1

[k2 −∆(ξ) + iǫ]2
. (20)
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Wick rotation

The loop momentum kµ has four components, so let’s integrate over the time component

k0 before integrating over the space components k. Thus

∫

d4k

(2π)4
1

[k2 −∆(ξ) + iǫ]2
=

∫

d3k

(2π)3

∫

dk0

2π

1

[(k0)2 − k2 −∆(ξ) + iǫ]2
. (21)

In the k0 complex plane, the integrand has 2 double poles at

k0 = ±
(

√

k2 +∆(ξ)− iǫ
)

(22)

where (for the t channel) ∆ > 0 ∀ξ because t < 0. Graphically

(23)

where red dots denote the poles and the blue line along the real axis is the integration contour.

Apart from the two poles, the integrand is regular everywhere else in the complex sphere,

including the complex infinity. Indeed, for k0 → ∞, the integrand decreases faster than 1/(k0)2,

so the directions in which the two ends of the contour approach the complex infinity does not

affect the integral. This allows us to deform not only the middle of the integration contour

but also the directions of its ends: as long as the deformation does not crosses the poles of the

integrand, the integral would remain the same. In particular, we may rotate the integration
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contour 90◦ counterclockwise until it runs along the imaginary axis,

(24)

Note: the rotation must be in the counterclockwise direction because a clockwise rotation would

make the contour cross the two poles — which is not allowed!

The rotation (24) of the k0 integration contour is called Wick rotation after Gian Carlo

Wick, an Italian physicist. It amounts to

k0 = ik4 (25)

for a real k4 running from −∞ to +∞. In terms of the k4,

k2 = (k0)2 − k2 = −(k4)2 − k2 = −

4
∑

i=1

(ki)2. (26)

In other words, we may combine the real 3-space vector k = (k1, k2, k3) and the real k4 into

a real 4-vector kE = (k1, k2, k3, k4) in the Euclidean 4D momentum space with Euclidean

positive-definite metric

k2E = (k1)2 + (k2)2 + (k3)2 + (k4)2. (27)

This Euclidean space has a 4D rotational symmetry SO(4), which is related by analytic con-

tinuation (from real k4 to real k0 = ik4) to the Lorentz SO+(3, 1) symmetry of the Minkowski
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space. Also, under this analytic continuation

k2Mink = gµνk
µkν = −k2Eucl = −

4
∑

i=1

(ki)2 (28)

and

d4kMink = d3k× dk0 = d3k× idk4 = id4kEucl . (29)

Thus, analytically continuing the integral (20) over the Minkowski loop momentum k to the

integral over the Euclidean loop momentum kE , we get

F(t) =
−iλ2

2

1
∫

0

dξ

∫

reg

d4k

(2π)4
1

[k2 −∆(ξ) + iǫ]2

→
−iλ2

2

1
∫

0

dξ

∫

reg

i d4kE
(2π)4

1

[−k2E −∆(ξ) + iǫ]2

= +
λ2

2

1
∫

0

dξ

∫

reg

d4kE
(2π)4

1

[k2E +∆(ξ)− iǫ]2
.

(30)

Moreover, in the Euclidean momentum space, the integrand does not have any poles at real

kE , so we do not need the −iǫ term in the denominator to regulate them, thus

F(t) = +
λ2

2

1
∫

0

dξ

∫

reg

d4kE
(2π)4

1

[k2E +∆(ξ)]2
. (31)

Next, let’s make use of the SO(4) symmetry of the Euclidean momentum space. The

integrand of eq. (31) is SO(4) invariant, so let’s use the 4D analog of spherical coordinates in

the Euclidean momentum space. In such coordinates (ke, ψ, θ, φ),

d4kE = k3e dke × d3Ω(ψ, θ, φ) (32)
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where the 3-volume of the unit 3-sphere in 4D is

∫

d3Ω(ψ, θ, φ) = 2π2, (33)

thus

d4kE
(2π)4

=
2π2

(2π)4
× k3e dke (34)

and hence

F(t) = +
λ2

16π2

1
∫

0

dξ

∞
∫

0

reg
k3e dke

[k2E +∆(ξ)]2
. (35)

Divergence and Cutoff

Note that the remaining momentum integral (35) must be regulated, because without a

regulator it diverges logarithmically as ke → ∞. By logarithmic divergence, I mean that for a

very large Λ2 ≫ ∆,

Λ
∫

0

k3e dke
[k2e +∆]2

= logΛ + finite, (36)

so for Λ → ∞ the integral diverges as log Λ. Indeed,

Λ
∫

0

k3e dke
[k2e +∆]2

=

Λ2

∫

0

k2e ×
1
2d(k

2
e)

[k2e +∆]2

=
1

2

Λ2+∆
∫

∆

(x−∆)dx

x2
〈〈where x = k2e +∆ 〉〉

=
1

2

(

log x +
∆

x

)
∣

∣

∣

∣

Λ2+∆

∆

=
1

2

(

log
Λ2 +∆

∆
+

∆

Λ2 +∆
−

∆

∆

)

=
1

2
log

Λ2

∆
−

1

2
+ O

(

∆

Λ2

)

−−−→
Λ→∞

log Λ + finite .

(37)

The divergences like this are called the ultraviolet divergences because they stem from the

8



‘ultraviolet limit’ of infinitely large loop momenta. Such UV divergences are all over the place in

quantum field theory, and the physicists have learned how to regulate them from the beginning

of modern QED in late 1940’s, with more ways being developed over the following decades.

Basically, each regulator somehow suppresses or cancels the effects of very large loop momenta

ke >∼ Λ for some UV cutoff scale Λ.

At first blush, such regulation makes the perturbative expansion of various scattering am-

plitudes dependent on the cutoff scale, for example

M(s, t, u) = −λ + λ2 × F1 loop(s, t, u; Λ) + λ3 × F2 loops(s, t, u; Λ) + · · · . (38)

However, this cutoff-dependence can be canceled by a suitable renormalization of the λ coupling.

Basically, we distinguish between the bare coupling λb in the theory’ Lagrangian and hence the

Feynman rules, and the physical coupling λph defined in terms of a scattering amplitude, for

example

λph
def
= −M(elastic, at threshold). (39)

The λ in the series (38) is the bare coupling λb, and when we re-express the same ampli-

tude M(s, t, u) as a power series in the physical coupling λph, the result turns out to be

‘miraculously’ independent on the cutoff scale Λ. We shall see how this works at the one-loop

level later in these notes.

The techniques for eliminating the Λ dependence from the relations between the physical

amplitudes were developed back in 1950. But for a a couple of decades these techniques seemed

to be mere ‘sweeping infinities under the carpet’ without a clear understanding why they work.

The understanding came from the concept of effective low-energy / long-distance quantum field

theory which was developed in late 1960s through early 1970s by Leo Kadanoff and Kenneth

Wilson in condensed matter and by Steven Weinberg et al in relativistic QFT.

Kadanoff and Wilson were focused on critical phenomena in condensed matter. They

noticed that near a critical point, the long-distance behavior does not depend on the short-

distance structure of the condensed matter in question. Instead, all the short-distance effects

can be summarized in a few parameters of an effective QFT governing the long-distance physics.
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For example, in a magnetic material near a Curie point, the magnetization (along a preferred

axis) is governed by a 3D scalar field theory with Hamiltonian

H =

∫

d3x

(

A(T )

2
(∇Φ)2 +

B(T )

2
Φ2 +

C(T )

24
Φ4

)

, (40)

and all the short-distance detailed of the material in question affect this effective long-distance

theory only via the temperature-dependent parameters A(T ), B(T ), and C(T ).

At the same time, many high-energy physicists were investigating the consequences of the

spontaneously broken chiral symmetry of the strong interaction. At first, this was done in the

non-QFT language of the scattering amplitudes — especially the amplitudes involving ‘soft’

pions of energies E <∼ 400 MeV, — and then led to the development of the current algebra, i.e.

the algebra of the current operators of the chiral symmetry. But eventually Steven Weinberg

et al showed that the simplest way to implement this current algebra is in terms of the effective

low-energy QFT for the soft pions, for example a linear or a non-linear sigma-model. Such a

sigma model summarizes the effects of the spontaneous chiral symmetry breaking on the soft

pions and has sigma model has only a couple of parameters — the pion’s decay constant fπ

and the pion’s mass mπ, — and it does not depend on any high-energy features of the ultimate

strong-interaction theory except via these parameters.

As a simple example of a long-distance effective theory in condensed matter, consider the

Debye theory of the heat capacity of a solid. A single harmonic oscillator has heat capacity

C(T ) =

(

(ω/2T )

sinh(ω/2T )

)2

(41)

(in h̄ = 1, kBoltzmann = 1 units), so approximating the solid crystal’s degrees of freedom as a

bunch of independent vibrational modes, we have

C(T ) =

ωmax
∫

0

dω
dN

dω
×

(

(ω/2T )

sinh(ω/2T )

)2

(42)

where dN/dω is the phonon density of states. In real-life crystals, this density of states can be

a rather complicated function of the frequency, depending on the phonon’s dispersion relation
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ω(k); for example, the silicon crystal has

However, the low-frequency phonons always have

ω = cs|k| (43)

where cs is the speed of sound in the crystal, while

dN = 3polarizations ×

(

L

2π

)3

d3k −→
3L3

2π2
|k|2 d|k|, (44)

hence

for low frequencies,
dN

dω
=

3L3

2π2c3s
× ω2. (45)

At higher frequencies, the real-life crystals have a much messier phonon densities of states, but

the Debye theory cuts off all this high-frequency mess. Instead, it extends the low-frequency

formula (45) up to some maximal frequency ΩD (now called the Debye frequency), and then
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abruptly cuts off to zero, thus

(

dN

dΩ

)

Debye

=

{

(3L3/2π2c3s)× ω2 for ω < ΩD,

0 for ω > ΩD.
(46)

Thus, in the Debye theory

C(T ) =
3L3

2π2c3s

ΩD
∫

0

dω ω2 ×

(

(ω/2T )

sinh(ω/2T )

)2

, (47)

which depends on the short-distance structure of the crystal only via its speed of sound cs and

the Debye frequency ΩD.

Back to the λΦ4 theory

In the momentum terms, the Debye theory corresponds to the hard-edge cutoff of the

phonon’s momenta to

|k| ≤
ωD
cs

. (48)

The relativistic QFT analogy of the Debye cutoff is a similar hard-edge cutoff of the Euclidean

loop momentum kE ,

|kE| ≤ Λ. (49)

In my my next set of notes I shall introduce several other cutoff types commonly used in

relativistic QFTs, but for the moment let me calculate the one-loop scattering amplitude in the

λΦ4 theory using the Debye-like hard-edge cutoff (49).

Applying this cutoff as a regulator of the Euclidean momentum integral (35), we get

∞
∫

0

reg
k3e dke

[k2E +∆]2
=

Λ
∫

0

k3e dke
[k2E +∆(ξ)]2

=
1

2

(

log
Λ2 +∆

∆
+

∆

Λ2 +∆
−

∆

∆

)

=
1

2
log

Λ2

∆
−

1

2
+ O

(

∆

Λ2

)

(50)

(cf. eq. (37)). Moreover, we assume that the cutoff scale Λ is much larger than the particle’s
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mass m or any of the incoming or outgoing particles’ energies. Consequently,

∆(ξ) = m2 − t× ξ(1− ξ) ≪ Λ2 (∀ξ), (51)

which allows us to neglect all positive powers of ∆/Λ2, thus

∞
∫

0

reg
k3e dke

[k2E +∆(ξ)]2
−→

1

2
log

Λ2

∆(ξ)
−

1

2
(52)

and therefore

F(t) =
λ2

32π2

1
∫

0

dξ

(

log
Λ2

∆(ξ)
− 1

)

. (53)

To evaluate the remaining integral over the Feynman parameter ξ, we use

log
Λ2

∆(ξ)
= log

Λ2

m2
− log

∆(ξ)

m2
= log

Λ2

m2
− log

(

1 −
t

m2
× ξ(1− ξ)

)

. (54)

Consequently,

1
∫

0

dξ

(

log
Λ2

∆(ξ)
− 1

)

= log
Λ2

m2
− J(t/m2) − 1 (55)

where

J(t/m2)
def
=

1
∫

0

dξ log

(

1 −
t

m2
× ξ(1− ξ)

)

, (56)

and therefore

F(t) =
λ2

32π2

(

log
Λ2

m2
− 1 − J(t/m2)

)

. (57)

Finally, the net one-loop contribution to the elastic scattering amplitude comes from 3

diagrams (3) related by the crossing symmetries, thus

M1 loop(s, t, u) = F(t) + F(u) + F(s)

=
λ2

32π2

(

3 log
Λ2

m2
− 3 − J(t/m2) − J(u/m2) − J(s/m2)

)

.
(58)

13



Physical and Bare couplings

Altogether, the elastic scattering amplitude is

M(s, t, u) = Mtree + M1 loop(s, t, u) + Mhigher loops(s, t, u)

= −λb +
λ2b

32π2

(

3 log
Λ2

m2
− 3 − J(t/m2) − J(u/m2) − J(s/m2)

)

+ O(λ3b)

(59)

where λb is the bare coupling of the Feynman rules. But in order to compare this amplitude to

the experiment, we need to re-express it in terms of some directly measurable physical coupling

λph rather than the bare coupling. There are many slightly different ways to define this physical

coupling, so let me pick a particularly simple choice for this class: −λph is the elastic scattering

amplitude at the threshold, s = 4m2 while t = u = 0. Thus, in light of out one-loop result (59),

λph = −M(s = 4m2, t = u = 0)

= +λb −
λ2b

32π2

(

3 log
Λ2

m2
− 3 − 2J(0) − J(4)

)

+ O(λ3b)

= +λb −
λ2b

32π2

(

3 log
Λ2

m2
− 2

)

+ O(λ3b),

(60)

where the last equality follows from J(0) = 0 and J(4) = −1, cf. eq. (56). Reversing this series,

we have

λb = λph +
1

32π2

(

3 log
Λ2

m2
− 2

)

×
(

λb = λph +O(λ2ph)
)2

+ O
(

(λb = λph +O(λ2ph))
3
)

= λph +
1

32π2

(

3 log
Λ2

m2
− 2

)

× λ2ph + O(λ3ph),

(61)

and when we plug this bare coupling into the scattering amplitude (59) for general (s, t, u), we

end up with
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M(s, t, u) = −

(

λb = λph +
λ2ph
32π2

(

3 log
Λ2

m2
− 2

)

+ O(λ3ph)

)

+
1

32π2

(

3 log
Λ2

m2
− 3 − J(t/m2) − J(u/m2) − J(s/m2)

)

×

×
(

λb = λph +O(λ2ph)
)2

+ O
(

(λb = λph +O(λ2ph))
3
)

= −λph +
λ2ph
32π2

×









−3 log
Λ2

m2
+ 2

+3 log
Λ2

m2
− 3 − J(t/m2) − J(u/m2) − J(s/m2)









+ O(λ3ph)

= −λph +
λ2ph
32π2

×
[

−1 − J(t/m2) − J(u/m2) − J(s/m2)
]

+ O(λ3ph).

(62)

Note how the cutoff scale Λ cancels out from this formula!

At higher loop orders we have similar behavior: The Feynman rules yield scattering ampli-

tudes as power series in the bare coupling λb with cutoff-dependent coefficients, for example

Melastic(s, t, u) = −λb + λ2b×A(s, t, u; Λ) + λ3b×B(s, t, u; Λ) + λ4b×C(s, t, u; Λ) + · · · . (63)

Consequently, the physical coupling λph obtains as a power series in the bare coupling,

λph = λb − λ2b × A0(Λ) − λ3b ×B0(Λ) − λ4b × C0(Λ) + · · · (64)

where A0(Λ) is the value of the A(s, t, u; Λ) at the threshold, and ditto for the B0, C0, etc.

Reversing this expansion, we get λb as a power series in the physical coupling,

λb = λph + λ2ph × A0 + λ3ph × (2A2
0 +B0) + λ4ph × (5A3

0 + 5A0B0 + C0) + · · · (65)

which allows us to re-express the scattering amplitudes such as (63) as power series in the
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physical coupling λph:

M(s, t, u) = − λph + λ2ph ×
[

A(s, t, u)− A0

]

+ λ3ph ×
[(

B(s, t, u)− B0

)

+2A0

(

A(s, t, u)−A0)
)]

+ λ4ph ×





(

C(s, t, u)− C0

)

+ 3A0

(

B(s, t, u)− B0

)

+ (2B0 + 5A2
0)×

(

A(s, t, u)− A0

)





+ · · · .

(66)

In eq. (62) we saw how the cutoff dependence cancels out from the one-loop coefficient

A(s, t, u; Λ) − A0(Λ) =
1

32π2
×
[

−1 − J(t/m2) − J(u/m2) − J(s/m2)
]

(67)

in this series. It turns out that all the higher-loop coefficients in the series (66)

B(s, t, u; Λ) − B0(Λ) + 2A0(Λ)×
(

A(s, t, u; Λ)− A0(Λ)
)

, (68)

C(s, t, u; Λ) − C0(Λ) + 3A0(Λ)×
(

B(s, t, u; Λ)− B0(Λ)
)

+
(

2B0(Λ + 5A2
0(Λ)

)

×
(

A(s, t, u; Λ)− A0(Λ)
)

, (69)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

are also cutoff-independent. Thus, the low-energy scattering amplitudes not only remain finite

in the Λ → ∞ limit, but are completely independent of the very-high-energy aspects of the

QFT such as its UV cutoff scale. This is an example of general rule of effective long-distance

field theories: The long-distance physics depends on the UV aspects of the theory — such as

its bare coupling λb, the bare mass mb, the UV cutoff scale Λ, or the specific manner of the

cutoff — only through a few parameters: In our case, the physical coupling λph and the physical

particle mass mph — both of which are directly measurable at long distances.

I shall explain the mass renormalization — the difference between the bare m2
b parameter

in the QFT’s Lagrangian and the physical mass2 m2
ph of the scalar particle — next week. And

later in class we shall learn how to reorganize the perturbation theory in order to expand the

scattering amplitudes in power of the physical coupling λph without going through intermediate

series like (63) in terms of the bare coupling.
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