
UV Regularization Schemes

Many Feynman diagrams suffer from the ultraviolet divergences — the integral over the

loop momentum kµ (or several loop momenta kµ1 , k
µ
2 , . . .) diverges for k

µ → ∞. To make sense

of such a diagram, we need to regulate the divergence by somehow cutting-off, suppressing, or

canceling the very-high-kµ regime of the diagram, which in QFT terms calls for cutting-off,

suppressing, or canceling the effects of the very-high-momentum modes of the quantum fields.

In these notes I shall explain several common UV regularization schemes — also called the UV

cutoffs — which render the divergent Feynman diagrams finite:

1. Wilson’s hard edge cutoff.

2. Pauli–Villars.

3. Higher derivatives (in the λφ4 theory) or covariant higher derivatives (CHD) in QED and

other gauge theories.

4. Lattice. (Very briefly, but will explain in more detail after the Spring break.)

5. Dimensional regularization d = 4− 2ǫ.

All these regularization schemes are physically equivalent to each other — i.e., they yield the

same finite amplitudes at energies E ≪ ΛUV — but some schemes are more convenient to use

than the other schemes.

Wilson’s Hard Edge Cutoff

Kenneth Wilson’s hard-edge cutoff was developed in condensed matter context. In an

effective long-distance quantum field theory, this scheme abruptly cuts off all modes of the

quantum fields with momenta larger than ΛUV. For the relativistic QFTs, this scheme means

that the Euclidean momenta of all propagators of any Feynman diagram should be less that

the UV cutoff scale Λ. For example, in the one-loop diagram

p1 p2

p′1 p′2

q1

q2

(1)
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we should have

both |q1E | ≤ Λ and |q2E | ≤ Λ while q1 + q2 ≡ qnet . (2)

In terms of the (Euclidean) shifted loop momentum

kµE = qµ1E − ξqµnet,E = (1− ξ)qµnet,E − qµ2E , (3)

the conditions (2) limit kµE to a lens-shaped region which becomes approximately spherical for

Λ ≫ |qnet,E:

|kE| ≤ kmax
E = Λ − |qnet,E| × f(angle between kE and qnet,E). (4)

For the logarithmically divergent integrals this cutoff is as good as |kE| ≤ Λ, for example

kmax

E
∫

0

2k3e dke
[k2e +∆]2

= log
(kmax

E )2

∆
− 1 + O

(

∆

(kmax
E )2

)

= log
Λ2

∆
− 1 + O

(

qnet,E

Λ

)

, (5)

hence
∫

reg

d4kE
(2π)4

1

[k2E +∆]2
=

1

16π2

(

log
Λ2

∆
− 1 + O

(

qnet,E

Λ

))

. (6)

But for the quadratically divergent integrals like

∫

reg

d4kE
(2π)4

1

k2E +∆
, (7)

we have

kmax

E
∫

0

2k3e dke
k2e +∆

= (kmax
E )2 − ∆× log

(kmax
E )2 +∆

∆

= Λ2 − 2fΛ|qnet,E| + f2q2net,E − ∆× log
Λ2

∆
+ O

(qnet,E
Λ

)

(8)

and hence
∫

reg

d4kE
(2π)4

1

[k2E +∆]2
=

1

16π2

(

Λ2 − c1Λ|qnet,E| + c2q
2
net,E − ∆× log

Λ2

∆
+ negligible

)

(9)

for some O(1) numeric constants c1 and c2. Thus, besides the expected quadratic divergence we

get a sub-leading linear divergence and an extra finite term. Worse, both the linearly-divergent
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and the finite terms depend on the external momenta, so they do not cancel out when we re-

express the amplitudes in terms of λphys instead of λbare. For this reason, Wilson’s hard-edge

cutoff is rarely applied to the amplitudes with worse-than-logarithmic UV divergences.

Conceptually, Wilson’s hard-edge cutoff is very clear (especially in the path-integral for-

mulation of the QFT) — we literally cut off the ultraviolet modes of the quantum fields. But

in practice it can be rather awkward to use — especially for the divergences that are worse

than logarithmic. And even in theory it has a couple of serious problems: First, the amplitudes

obtained using this cutoff are not exactly analytic functions of the particles’ momenta. The

non-analyticities may be rather small for |p| ≪ Λ, but their very existence destroys the so-called

dispersion relations based on exact complex analyticity of the scattering amplitudes. Second,

in gauge theories like QED or QCD, the hard edge of the momentum space breaks the gauge

invariance Ψ(x) → eiθ(x)Ψ(x) of the charged fields, and this leads to all kinds of troubles.

Pauli–Villars

In the Pauli–Villars regularization scheme — named after Wolfgang Pauli and Felix Villars

who invented it in 1949 — one does not literally cut off the ultraviolet momenta |ke| > Λ.

Instead, their contribution to the loop integrals is canceled by the similar loops of very heavy

compensating fields. For example, the PV-regulated λΦ4 theory has two scalar fields — the

physical field Φ and the regulator field χ — and the (bare) Lagrangian

L = 1
2(∂µΦ)

2 + 1
2(∂µχ)

2 −
m2

2
Φ2 −

Λ2

2
χ2 − λ

(

Φ4

24
+

Φ2χ2

4
+

χ4

24

)

. (10)

Also, every loop of the compensator field χ carries a minus sign!

Consequently, the one-loop amplitude for the elastic scattering of 2 physical particles is

given by

⊖ (11)

— plus two similar diagram pairs for the s channel and the u channel — where double red lines

denote the propagators of the superheavy compensator field χ. Together, the two diagrams (11)
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can be identified as the regulated t-channel diagram,

reg = ⊖ (12)

which yields

iF(t) =
λ2

2

∫

d4q1
(2π)4

1

q21 −m2 + iǫ
×

1

(q2 = qnet − q1)2 −m2 + iǫ

−
λ2

2

∫

d4q1
(2π)4

1

q21 − Λ2 + iǫ
×

1

(q2 = qnet − q1)2 − Λ2 + iǫ

=
λ2

2

∫

d4q1
(2π)4











1

q21 −m2 + iǫ
×

1

(q2 = qnet − q1)2 −m2 + iǫ

−
1

q21 − Λ2 + iǫ
×

1

(q2 = qnet − q1)2 − Λ2 + iǫ











.

(13)

Note: the second equality here is a part of the Pauli–Villars regularization scheme: One should

subtract the superheavy compensator loop from the loop of the physical fields before integrating

over the loop momenta.

The momentum integral (13) has two essential feature common to all UV regularization

schemes. On one hand, for |q1| ≪ Λ, the second term in the integrand is negligibly small com-

pared to the first terms, so the regulated integrand is approximately equal to the un-regulated

integrand. Thus, the UV regulator does not affect the integrand except at the ultraviolet mo-

menta |q1| >∼ Λ. On the other hand, for the very large momenta |q1| ≫ Λ, the second term

approximates the first term and starts canceling it. Thus,

for |q21| ≫ Λ2, (the integrand) −→
−2Λ2

(q21)
3
, (14)

which leads to a convergent momentum integral (13). The actual calculation of this finite

integral is a part of your current homework#13.

In general, a single PV compensator field χ — or in more complicated theories that λΦ4,

one PV compensator field for each physical field — suffices to regulate all the logarithmic UV

divergences and most linear O(Λ) divergences, but regulating the quadratic UV divergences

requires multiple PV compensators for some physical fields. But let us skip the technical

aspects of such multiple PV compensators until we actually have to use them in this class.
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The bottom line is: The Pauli–Villars is a good UV regulator for the λΦ4 theory or QED

as long as we stick to the perturbation theory and all the external momenta are much smaller

than the cutoff scale Λ. However, the PV-regulated theory should not be taken literally because

the compensating field χ has unphysical quanta. Indeed, χ(x) is a scalar field, but the minus

sign for each χ loop means χ is a fermion rather than a boson. By the spin-statistics theorem,

it means that the quanta of the χ field have either negative energies or negative norms in the

Hilbert space — or both, — and that would be quite impossible for physical particles.

Also, the Pauli–Villars scheme does not work in QCD or other non-abelian gauge theories

because massive compensators for the gluon fields would break the gauge symmetry of the

theory and hence the Slavnov–Taylor identities required for the theory’s renormalizability.

Higher Derivatives

In the higher-derivative (HD) regularization scheme, we do not use any compensating fields

but simply add small higher-derivative terms to the physical fields’ Lagrangian. For example,

in the λΦ4 theory, the HD-regularized Lagrangian is

Lreg = −
1

2Λ2
(∂2Φ)2 +

1

2
(∂µΦ)

2 −
m2

2
Φ2 −

λ4

24
Φ4. (15)

In terms of the Feynman rules of the regularized theory, the extra term — being quadratic in

Φ — modifies the propagators but leaves the vertices unchanged. Specifically, the propagator

becomes the Green’s function of the fourth-order derivative operator

1

Λ2
(∂2)2 + ∂2 + m2, (16)

hence

=
i

−(q4/Λ2) + q2 −m2 + iǫ
≈

i

q2 −m2 + iǫ
×

−Λ2

q2 − Λ2 + iǫ
. (17)

Note that for the non-ultraviolet loop momenta qµ ≪ Λ, the second factor in this propagator
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is very close to 1. Consequently, in the HD-regulated loop integral

∫

reg

d4q1
(2π)4

1

q21 −m2 + iǫ
×

1

q22 −m2 + iǫ

=

∫

d4q1
(2π)4

1

−(q41/Λ
2) + q21 −m2 + iǫ

×
1

−(q42/Λ
2) + q22 −m2 + iǫ

≈

∫

d4q1
(2π)4

1

q21 −m2 + iǫ
×

1

q22 −m2 + iǫ
×

−Λ2

q21 − Λ2 + iǫ
×

−Λ2

q22 − Λ2 + iǫ
,

(18)

the integrand is approximately equal to the un-regulated integrand (without the two red factors

on the bottom line) at the non-ultraviolet loop momenta qµ ≪ Λ. On the other hand, at the

very large loop momenta qµ ≫ Λ, the red factors become small so the whole integrand behaves

as

1

(q2)2
×

Λ4

(q2)2
rather than simply

1

(q2)2
, (19)

and that’s what makes the regulated integral (18) converge,

∫

d4q
Λ4

(q2)4
is finite. (20)

Again, the actual evaluation of the integral (18) is a part of your current homework#13, but

let me give you a hint: The red factors on the bottom line of eq. (18) are not sensitive to small

shifts of the momentum qµ by O(qnet) ≪ Λ, so you may replace them with

−Λ2

q21 − Λ2 + iǫ
×

−Λ2

q22 − Λ2 + iǫ
−→

Λ4

[k2 − Λ2 + iǫ]2
(21)

where kµ = qµ1 − ξqµnet is the shifted loop momenta from the Feynman’s parameter trick.

Similar to the Pauli–Villars, the higher-derivative scheme is a good UV regulator for the

perturbation theory — as long as all the external momenta are much smaller than the cutoff

scale Λ — but it should not be taken literally because it contains unphysical superheavy par-

ticles. Indeed, a scalar field with a 4-derivative Lagrangian has two degrees of freedom rather

than just one; looking at the poles of the propagator

i

−(q4/Λ2) + q2 −m2 + iǫ
≈

i

q2 −m2 + iǫ
−

i

q2 − Λ2 + iǫ
(22)

we see 2 scalar particles, one of mass m and another of mass Λ. Moreover, the pole at q2 = Λ2

has a negative residue, and we shall learn later in class that this means negative Hilbert-space
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norm for the superheavy particle. Thus, the HD-regulated theory should not be taken literally

as a physical theory of 2 particle species but only as a UV regulator of the ordinary λΦ4 theory.

Covariant Higher Derivatives

In gauge theories like QED or QCD, the higher-derivative regulating terms should be re-

placed with covariant higher derivative terms. For example, in QED all derivative acting on the

electron field Ψ(x) must be covariant derivatives Dµ = ∂µ − ieAµ(x) rather than the ordinary

derivatives ∂µ. Hence, the CHD-regulated QED Lagrangian looks like

Lreg = −
1

4
Fµν

(

1 +
∂2

Λ2

)

F µν + Ψ

(

i 6D − m+
i

Λ2
6D 6D 6D

)

Ψ. (23)

Similar to the ordinary higher-derivative terms, the CHD (covariant higher derivative) terms

soften the photon’s and the electron’s propagators at ultraviolet momenta,

=
i

(1− (q2/Λ2)) 6q −m+ iǫ
≈

i

6q −m+ iǫ
×

−Λ2

q2 − Λ2 + iǫ
(24)

and

=
−igµν

−(q4/Λ2) + q2 + iǫ
≈

−igµν

q2 + iǫ
×

−Λ2

q2 − Λ2 + iǫ
(25)

(in the Feynman gauge). However, the covariant 6D3 = (6 ∂ − ie 6A)3 derivative acting on the

electron field also modifies the electron-photon interaction. In terms of the Feynman rules, the

single-photon vertex becomes larger at the ultraviolet electron momenta,

= ieγµ −
ie

Λ2

(

p′2γµ+ 6p′γµ 6p+ γµp2
)

, (26)

and we also get two-photon and 3-photon vertices

= O

(

e2p

Λ2

)

and = O

(

e3

Λ2

)

. (27)

In a general loop diagram, at very large loop momenta qµ ≫ Λ, the modified propagators
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reduce the integrand by powers of Λ2/q2 while the modifies vertices increase the integrand by

opposite factors q2/Λ2. Altogether, in multi-loop diagrams the propagators have a stronger

effect than the vertices, so the integrands become smaller for qµ ≫ Λ and the momentum

integrals become convergent. But in the one-loop diagrams, the vertex corrections cancel the

effect of the propagator corrections, so the UV-divergent one-loop diagrams like

(28)

remain divergent. To regulate such diagrams we need an additional UV regulator such as

Pauli–Villars.

Lattice

In this regularization scheme, we modify the very spacetime in which the QFT lives. First,

we analytically continue from the d = 3 + 1 Minkowski spacetime to the d = 4 Euclidean

spacetime, and then we discretize all 4 dimensions of the Euclidean spacetime. In other words,

we turn it into a 4D crystalline lattice of very small lattice spacing a = (π/Λ),

∀µ = 1, 2, 3, 4 : xµ = nµ × a for integer nµ only. (29)

Constructing a quantum field theory in such a discrete spacetime involves the path integral

formalism, which I shall explain in detail sometimes in March. For the moment, let me simply

tell you that the lattice is the only known non-perturbative UV regulator of quantum field

theories. In particular, since the QCD coupling becomes non-perturbatively strong at low

energies E <∼ 1 GeV, the only way to derive the low-energy hadronic physics — or even the

mass spectrum of mesons and baryons — directly from QCD is to put QCD on a lattice.

On the other hand, in perturbation theory the lattice is a rather awkward cutoff due to

breaking the SO(4) symmetry of the continuous Euclidean spacetime. In particular, the lattice

momentum space becomes a 4D torus — a direct product of 4 compact circles where each ki is
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periodic modulo (2π/a), — and the scalar propagator becomes

(a/2)2
∑4

µ=1 sin
2(kµa/2) + (ma/2)2

, (30)

— which asymptotes to 1/(k2E + m2) for small momenta ke ≪ (1/a), but is much uglier at

larger momenta.

Dimensional Regularization

The dimensional regularization was invented by Gerard ’t Hooft and Martinus Veltman 1972

as a way to cutoff the UV divergences of QCD without breaking its gauge symmetry, and soon

became the preferred UV regularization scheme for most quantum field theories. Similar to the

lattice cutoff, the dimensional regularization (DR) modifies the spacetime in which the QFT

lives, but unlike the lattice the DR keeps the spacetime continuous. Instead, it analytically

continues the spacetime dimension from d = 4 to d = 4 − 2ǫ. Since we are going to use

DR as a UV cutoff throughout this semester, I explain the technical aspects of dimensional

regularization in a separate set of notes.
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