
Renormalizability and Dimensional Analysis

In these notes I shall explain the relation between energy dimensionalities of the coupling

constants of a quantum field theory and between super-renormalizability, renormalizability,

or non-renormalizability of the theory.

Let’s start with the basic dimensional analysis. In the h̄ = c = 1 units, all quantities are

measured in units of energy to some power. For example [m] = [pµ] = E+1 while [xµ] = E−1,

where [m] stands for the dimensionality of the mass rather than the mass itself, and ditto

for the [pµ], [xµ], etc. The action

S =

∫
d4xL

is dimensionless (in h̄ 6= 1 units, [S] = h̄), so the Lagrangian of a 4D field theory has

dimensionality [L] = E+4.

Dimensionalities — also called the canonical dimensions — of the quantum fields follow

from their free Lagrangians.

For example, a scalar field Φ(x) has

Lfree = 1
2∂µΦ ∂µΦ − 1

2m
2Φ2, (1)

so [L] = E+4,
[
m2
]

= E+2, and [∂µ] = E+1 imply [Φ] = E+1. Likewise, the EM field has

LEM
free = −1

4FµνF
µν =⇒ [Fµν ] = E+2, (2)

and since Fµν = ∂µAν − ∂νAµ, the Aν(x) field has dimension

[Aν ] = [Fµν ]
/

[∂µ] = E+1. (3)

In fact, all the bosonic fields in 4D spacetime have canonical dimensions E+1 because their

kinetic terms are quadratic in ∂µ(field). On the other hand, the fermionic fields like the

Dirac field Ψ(x) have dimensionality [Ψ] = E+3/2. Indeed, the kinetic terms in the free

1



Dirac Lagrangian

Lfree = Ψ(iγµ∂µ −m)Ψ (4)

involve two fermionic fields Ψ and Ψ but only one derivative ∂µ. Consequently, [L] = E+4

implies
[
ΨΨ
]

= E+3 and hence [Ψ] =
[
Ψ
]

= E+3/2. Similarly, all other types of fermionic

fields in 4D have canonical dimension E+3/2.

In QFTs in other spacetime dimensions d 6= 4, similar arguments show that the bosonic

fields such as scalars and vectors have canonical dimension

[Φ] = [Aν ] = E+(d−2)/2 (5)

while the fermionic fields have canonical dimension

[Ψ] = E+(d−1)/2. (6)

In perturbation theory, dimensionality of coupling parameters such as λ in λΦ4 theory or

e in QED follows from the field’s canonical dimensions. For example, in a 4D scalar theory

with Lagrangian

L = 1
2∂µΦ ∂µΦ − 1

2m
2Φ2 −

∑
n≥3

Cn
n!

Φn, (7)

the coupling Cn of the Φn term has dimensionality

[Cn] = [L]
/

[Φ]n = E4−n. (8)

In particular, the cubic coupling C3 has positive energy dimension E+1, the quartic cou-

pling λ = C4 is dimensionless, while all the higher-power couplings have negative energy

dimensions Enegative. Note how the sign of the coupling’s energy dimension matches the

renormalizability of the theory: the super-renormalizable coupling κ has a positive energy

dimension, the renormalizable coupling λ is dimensionless, and the non-renormalizable cou-

plings Cn for n > 4 have negative energy dimensions. This is an example of a general

rule:
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• All couplings of a renormalizable theory must have non-negative energy dimensions.

• If all the couplings of a theory have strictly positive energy dimensions, then the theory

is super-renormalizable.

• But if any coupling of a theory has a negative energy dimension, then the theory is non-

renormalizable, even if it also have other couplings of non-negative energy dimensions.

To see how this works, consider a generic interaction term in the Lagrangian of some

QFT. In general such term is a product of some coupling constant g and several fields or

their derivatives. Let nb be the number of bosonic fields in this product, nf the number of

fermionic fields, and nd the number of spacetime derivatives ∂µ acting on all these fields.

Consequently,

[field product] = Enb+
3
2
nf+nd , (9)

and since the entire interaction term must have dimensionality E+4 — same as the entire

Lagrangian — the coupling constant g must have dimensionality

[g] = E∆ for ∆ = 4 − nb − 3
2nf − nd . (10)

In general, a QFT may have several coupling constants, and each coupling has its own energy

dimension ∆ according to eq. (10).

Next, consider a Feynman diagram for some QFT. Let the diagram have L loops, Pb

bosonic propagators, Pf fermionic propagators, and V vertices of all kinds, so the diagram

evaluates to ∫
d4Lq

∏
(propagators)×

∏
(vertices). (11)

Consider the superficial degree of divergence D of such a diagram. At large momenta q,

each bosonic propagator behaves as 1/q2 while each fermionic propagator behaves as 1/q.

The vertices may also be momentum-dependent: if the interaction term in the Lagrangian

involves nd derivatives of fields, then the corresponding vertex includes nd power of momenta,
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so for large q it grows as q+nd . Altogether, the momentum integral (11) behaves as

∫
d4Lq

1

q2Pb+Pf
×

vertices∏
v

q+nd(v), (12)

so its superficial degree of divergence is

D = 4L − 2Pb − Pf +
V∑
v=1

nd(v). (13)

Now let’s rework this formula using basic graph theory. By the Euler theorem

L − Pnet + V = 1 =⇒ L = 1 + Pb + Pf − V, (14)

hence

D = 4 + (4− 2 = 2)× Pb + (4− 1 = 3)× Pf +
V∑
v=1

(nd − 4). (15)

Also, counting the line ends — bosonic or fermionic — we obtain

2Pb + Eb =
∑
v

nb(v), (16)

2Pf + Ef =
∑
v

nf (v), (17)

and hence

2Pb + 3Pf =
V∑
v=1

(nb + 3
2nf ) − Eb − 3

2Ef . (18)

Consequently, eq. (15) becomes

D = 4 − Eb − 3
2Ef +

V∑
v=1

(nb + 3
2nf + nd − 4). (19)

Note that the combinations (nb+
3
2nf +nd−4) we sum over the vertices are precisely (minus)

the energy dimensions of the corresponding couplings, cf. eq. (10). Thus, we arrive at the
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key relation

D = 4 − Eb − 3
2Ef −

V∑
v=1

∆(gv). (20)

between the couplings’ energy dimensions and the divergence degrees of the Feynman dia-

grams.

The rules relating couplings’ dimensions ∆ to the renormalizability of the QFT in ques-

tion follow from eq. (20):

• If all the couplings of the theory have strictly positive dimensions ∆, then only a finite

number of Feynman diagrams for the theory may have D ≥ 0 and hence suffer from

the overall UV divergence. All the rest of the diagrams are either UV-finite of have

divergent sub-diagrams — but once the subgraph divergence is canceled by an in-situ

counterterm, the overall diagram becomes finite. And that’s what makes the theory

in question super-renormalizable.

• If some couplings of the theory are dimensionless (∆ = 0) while other have ∆ > 0, then

the theory has an infinite number of diagrams with D ≥ 0 and therefore divergent.

But all such diagrams must have Eb + 3
2Ef ≤ 4, which means that there is only a

finite number of divergent amplitudes. Consequently, all the UV divergences can be

canceled by a finite set of counterterms, but the coefficients of such counterterms must

be adjusted order-by-order in perturbation theory at all loop orders. And that’s what

makes the theory in question renormalizable.

• Finally, if a theory has a coupling with a negative dimension ∆, then the theory

has an infinite number of divergent amplitudes. Indeed, for any given numbers of

external bosonic and fermionic legs, eq. (20) allows for D ≥ 0 provided the diagram

includes enough vertices with ∆ < 0. Consequently, the theory needs an infinite

set of counterterms to cancel all such divergences, and that’s what makes it non-

renormalizable.

? ? ?

5



Now that we know the significance of the couplings’ dimensions

∆ = 4 − nb − 3
2nf − nd , (10)

let’s classify the renormalizable (∆ = 0) and the super-renormalizable (∆ > 0) couplings of

4D field theories. Since any physical interaction term involves at least 3 fields (otherwise,

it would be a part of the free Lagrangian), it follows that the only way to get ∆ > 0 is

to have nb = 3, nf = 0, and nd = 0, — in other words, boson3 without ∂µ derivatives.

Likewise, there are only 3 ways to get a renormalizable coupling with ∆ = 0, namely boson4,

boson2 × ∂ boson, and boson × fermion2. All other combinations of fields lead to non-

renormalizable couplings with ∆ < 0.

In terms of more specific types of fields and couplings, there is only one kind of a super-

renormalizable coupling, namely the 3-scalar coupling

−κ
6

Φ3, or for multiple fields −
∑
i,j,k

κijk
6

ΦiΦjΦk . (21)

Also, there are only 5 kinds of renormalizable couplings:

1. The 4-scalar coupling

− λ

24
Φ4, or for multiple fields −

∑
i,j,k,`

λijk`
24

ΦiΦjΦkΦ` . (22)

2. Gauge couplings of vectors to charged scalars

−iqAµ × (Φ∗∂µΦ − Φ∂µΦ∗) + q2AµA
µ × Φ∗Φ ⊂ DµΦ∗DµΦ, (23)

or for non-abelian gauge symmetries

−igAaµ ×
(

Φ†T a∂µΦ − ∂µΦ†T aΦ
)

+ g2AaµA
bµ × Φ†T aT bΦ ⊂ DµΦ†DµΦ. (24)

3. Non-abelian gauge couplings between the vector fields

−gfabc(∂µAaν)AµbAνc − g2

4
fabcfadeAbµA

c
νA

µdAνe ⊂ −1

4
F aµνF

µνa. (25)
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4. Gauge couplings of vectors to charged fermions,

−qAµ ×ΨγµΨ or − gAaµ ×ΨγµT
aΨ ⊂ Ψ(iγµD

µ)Ψ. (26)

If the fermions are massless and chiral, we may also have

−gAaµ ×Ψγµ
1∓ γ5

2
T aΨ, (27)

or in the Weyl fermion language

−gAaµ × ψ
†
Lσ̄µT

aψL or − gAaµ × ψ
†
RσµT

aψR .

5. Yukawa couplings of scalars to fermions,

−yΦ1 ×ΨΨ or − iyΦ2 ×Ψγ5Ψ, (28)

depending on the scalar’s parity — the Φ1 should be a true scalar and the Φ2 a

pseudoscalar, — of for the chiral fermions

−yΦψ>σ2ψ − y∗Φ∗ψ†σ2ψ
∗. (29)

— And this is it! All other coupling types are non-renormalizable in 4 spacetime dimen-

sions.

? ? ?
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In other spacetime dimensions d 6= 3 + 1, a coupling involving nb bosonic fields, nf

fermionic fields, and nd derivatives has dimensionality

∆(d) = d − nb ×
d− 2

2
− nf ×

d− 1

2
− nd

=
(

4 − nb − 3
2nf − nd

)
−

nb + nf − 2

2
× (d− 4)

= ∆(d = 4) −
nb + nf − 2

2
× (d− 4).

(30)

Since all interactions involve three or more fields, thus nb+nf ≥ 3, the dimensionality of any

particular coupling always decreases with spacetime dimension d. Consequently, there are

more (super)renormalizable couplings with ∆ ≥ 0 in lower dimensions d = 2 + 1 or d = 1 + 1

but fewer such couplings in higher dimensions d > 3 + 1. In particular,

• In d ≥ 6 + 1 dimensions all couplings have ∆ < 0 and there are no renormalizable

couplings at all!

• In d = 5 + 1 dimensions there is a unique ∆ = 0 coupling (κ/6)Φ3, while all the

other couplings have ∆ < 0. Consequently, the only renormalizable theories are scalar

theories with cubic potentials,

L =
∑
i

(
1
2(∂µΦa)

2 − 1
2m

2
iΦ

2
a

)
− 1

6

∑
i,j,k

µijkΦiΦjΦk . (31)

However, while such theories are perturbatively OK, they do not have stable vacua

since a cubic potential is always unbounded from below.

• In d = 4 + 1 dimensions, the (κ/6)Φ3 coupling has positive ∆ = +1
2 while all the

other couplings have negative energy dimensions. Hence, the scalar theories (31) are

super-renormalizable (but non-perturbatively sick), while all other interactive QFTs

are non-renormalizable.

? The bottom line is, in d > 3 + 1 dimensions there are no renormalizable theories with

stable vacua.

On the other hand, in lower dimensions d = 2 + 1 or d = 1 + 1 there are many more

(super)renormalizable ∆ ≥ 0. In particular, in d = 2 + 1 dimensions such couplings include:
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◦ Scalar couplings (Cn/n!)Φn up to n = 6;

◦ Gauge and Yukawa couplings like in 4D;

◦ Yukawa-like couplings ỹΦ2 ×ΨΨ involving 2 scalars;

∗ Chern–Simons couplings of non-abelian gauge fields to each other, and some other

exotic couplings, never mind the details.

Finally, in d = 1 + 1 dimensions there are infinite numbers of renormalizable and even

super-renormalizable couplings. Indeed, for d = 1+1 the bosonic fields have energy dimension

E0, so ∆ of a coupling does not depend on the number nb of bosonic fields it involves but

only on the numbers of derivatives and fermionic fields,

∆ = 2− nd − 1
2nf . (32)

Consequently, all scalar potentials V (Φ) — including CnΦn terms for any n, and even the

non-polynomial potentials — have ∆ = +2, so any V (Φ) potential is super-renormalizable

in 2D. Likewise, all Yukawa-like couplings ΦnΨΨ have ∆ = +1, so we may have terms like

yIJ(Φ)×Ψ
I
ΨJ for any functions yIJ(Φ).

At the ∆ = 0 level, we have renormalizable field-dependent kinetic terms

Lkin = 1
2gij(φ)× ∂µφi ∂µφj (33)

with any Riemannian metrics gij(φ) for the non-linear scalar field space, as well as a whole

bunch of fermionic terms with arbitrary scalar-dependent coefficients,

LΨ ⊃ 1
4gIJ(Φ)×Ψ

I
γµ
(
i
→
∂µ−i

←
∂µ

)
ΨJ + ΓIJk(Φ)× ∂µΦk ×Ψ

I
γµΨJ

+ 1
2RIJKL(Φ)×Ψ

I
γµΨJ ×Ψ

K
γµΨL.

(34)

In addition, there are gauge couplings with arbitrary scalar-dependent ggauge(Φ), chiral cou-

plings to Weyl or Majorana-Weyl fermions, etc., etc. In String Theory, many of these

couplings show up the context of the 2D field theory on the world sheet of the string.
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