Renormalizability and Dimensional Analysis

In these notes I shall explain the relation between energy dimensionalities of the coupling
constants of a quantum field theory and between super-renormalizability, renormalizability,

or non-renormalizability of the theory.

Let’s start with the basic dimensional analysis. In the i = ¢ = 1 units, all quantities are
measured in units of energy to some power. For example [m] = [p#] = E*! while [z#] = E~1,

where [m] stands for the dimensionality of the mass rather than the mass itself, and ditto

for the [p#], [x#], etc. The action
S = / diz L

is dimensionless (in & # 1 units, [S] = h), so the Lagrangian of a 4D field theory has

dimensionality [£] = E*4.

Dimensionalities — also called the canonical dimensions — of the quantum fields follow

from their free Lagrangians.

For example, a scalar field ®(x) has
Liee = 30,20'D — im?@?, (1)
so [£] = ET, [m?] = E*2 and [9,] = E™! imply [®] = ET!. Likewise, the EM field has
ﬁfErgg = —%FM,,F’“’ = [Fu] = E*?, (2)
and since F,, = 0, A, — 0,A,, the A, (z) field has dimension

[AV] = [FMV] / [au] - E—H- (3)

In fact, all the bosonic fields in 4D spacetime have canonical dimensions ET! because their
kinetic terms are quadratic in J,(field). On the other hand, the fermionic fields like the
Dirac field ¥(x) have dimensionality [¥] = E*3/2. Indeed, the kinetic terms in the free



Dirac Lagrangian
Liree = E(iVuaﬂ o m)qj (4>
involve two fermionic fields ¥ and W but only one derivative ,. Consequently, [£] = E*4

implies W\I/] = E*3 and hence [¥] = [m = E13/2, Similarly, all other types of fermionic

fields in 4D have canonical dimension E+3/2.

In QFTs in other spacetime dimensions d # 4, similar arguments show that the bosonic

fields such as scalars and vectors have canonical dimension
@] = [A)] = BT/ (5)
while the fermionic fields have canonical dimension

[\If] _ E+(d71)/2‘ (6)

In perturbation theory, dimensionality of coupling parameters such as A in A®* theory or
e in QED follows from the field’s canonical dimensions. For example, in a 4D scalar theory

with Lagrangian

C
L= 30,20"0 — Jm*®* —  —Lo", (7)
n>3
the coupling C), of the ®" term has dimensionality
ol = 1£] [ [o]" = B ®)

In particular, the cubic coupling C3 has positive energy dimension ET!, the quartic cou-
pling A = (4 is dimensionless, while all the higher-power couplings have negative energy
dimensions E"®8a4ve  Note how the sign of the coupling’s energy dimension matches the
renormalizability of the theory: the super-renormalizable coupling « has a positive energy
dimension, the renormalizable coupling A is dimensionless, and the non-renormalizable cou-
plings C,, for n > 4 have negative energy dimensions. This is an example of a general

rule:



e All couplings of a renormalizable theory must have non-negative energy dimensions.

If all the couplings of a theory have strictly positive energy dimensions, then the theory

is super-renormalizable.

e But if any coupling of a theory has a negative energy dimension, then the theory is non-

renormalizable, even if it also have other couplings of non-negative energy dimensions.

To see how this works, consider a generic interaction term in the Lagrangian of some
QFT. In general such term is a product of some coupling constant g and several fields or
their derivatives. Let nj be the number of bosonic fields in this product, ny the number of
fermionic fields, and ng the number of spacetime derivatives 0,, acting on all these fields.

Consequently,

field product] = pretanstna (9)

and since the entire interaction term must have dimensionality Et* — same as the entire

Lagrangian — the coupling constant g must have dimensionality
lg] = EA for A =4 — ny — Snp — ng. (10)

In general, a QFT may have several coupling constants, and each coupling has its own energy

dimension A according to eq. (10).

Next, consider a Feynman diagram for some QFT. Let the diagram have L loops, B,
bosonic propagators, Py fermionic propagators, and V' vertices of all kinds, so the diagram

evaluates to
/ d*tq H(propagators) X H(Vertices). (11)

Consider the superficial degree of divergence D of such a diagram. At large momenta g,
each bosonic propagator behaves as 1/¢? while each fermionic propagator behaves as 1/q.
The vertices may also be momentum-dependent: if the interaction term in the Lagrangian

involves ng derivatives of fields, then the corresponding vertex includes n; power of momenta,



+n4

so for large ¢ it grows as ¢7"™. Altogether, the momentum integral (11) behaves as

vertices

1

AL +

/d qupb—Han H q nd(v), (12)
v
so its superficial degree of divergence is

v
D = 4L — 2P, — Py + > ny(v). (13)

v=1

Now let’s rework this formula using basic graph theory. By the Euler theorem

hence
1%
D=4+ (@A-2=2xP + @A—1=3)xP; + Y (ng—4). (15)
v=1

Also, counting the line ends — bosonic or fermionic — we obtain

2P, + Ey = > m(v), (16)
v
2Py + Ey = an(v), (17)
v
and hence
|4
2P, + 3Py = Z(nb—l—%nf) — Ey — %Ef. (18)
v=1
Consequently, eq. (15) becomes
\4
D=4 — E, — %Ef + Z(nb+%nf+nd—4). (19)
v=1

Note that the combinations (n,+ %n §+nq—4) we sum over the vertices are precisely (minus)

the energy dimensions of the corresponding couplings, cf. eq. (10). Thus, we arrive at the



key relation

v
D =4 - E — 3E — ) Alg) (20)

v=1
between the couplings’ energy dimensions and the divergence degrees of the Feynman dia-

grams.

The rules relating couplings’ dimensions A to the renormalizability of the QFT in ques-

tion follow from eq. (20):

If all the couplings of the theory have strictly positive dimensions A, then only a finite
number of Feynman diagrams for the theory may have D > 0 and hence suffer from
the overall UV divergence. All the rest of the diagrams are either UV-finite of have
divergent sub-diagrams — but once the subgraph divergence is canceled by an in-situ
counterterm, the overall diagram becomes finite. And that’s what makes the theory

in question

e If some couplings of the theory are dimensionless (A = 0) while other have A > 0, then
the theory has an infinite number of diagrams with D > 0 and therefore divergent.
But all such diagrams must have FEj, + %E ¢ =< 4, which means that there is only a
finite number of divergent amplitudes. Consequently, all the UV divergences can be
canceled by a finite set of counterterms, but the coefficients of such counterterms must
be adjusted order-by-order in perturbation theory at all loop orders. And that’s what

makes the theory in question renormalizable.

e Finally, if a theory has a coupling with a negative dimension A, then the theory
has an infinite number of divergent amplitudes. Indeed, for any given numbers of
external bosonic and fermionic legs, eq. (20) allows for D > 0 provided the diagram
includes enough vertices with A < 0. Consequently, the theory needs an infinite
set of counterterms to cancel all such divergences, and that’s what makes it non-

renormalizable.



Now that we know the significance of the couplings’ dimensions
A:4—nb—%nf—nd, (10)

let’s classify the renormalizable (A = 0) and the super-renormalizable (A > 0) couplings of
4D field theories. Since any physical interaction term involves at least 3 fields (otherwise,
it would be a part of the free Lagrangian), it follows that the only way to get A > 0 is
to have n, = 3, ny = 0, and ng = 0, — in other words, boson? without 0y derivatives.

Likewise, there are only 3 ways to get a renormalizable coupling with A = 0, namely boson?,

boson? x dboson, and boson x fermion®. All other combinations of fields lead to non-

renormalizable couplings with A < 0.

In terms of more specific types of fields and couplings,

, namely the 3-scalar coupling

Kijk

—g %, or for multiple fields  — Y | L (21)
0,5,k
Also, there are only 5 kinds of renormalizable couplings:
1. The 4-scalar coupling
A3, or for multiple field AR g 5 D
—5 & or or multiple fields _ZT QPP . (22)
0,5,k L
2. Gauge couplings of vectors to charged scalars
—igA" x (9*0,® — $0,P9%) + ¢*A A" x ©*d C D,P* D', (23)

or for non-abelian gauge symmetries
—igA™ x (@1T°9,@ — 9,0!T°®) + g?AzA" x o'T°T'e ¢ D,o! Dre. (24)
3. Non-abelian gauge couplings between the vector fields

2
aoc a vc g aoc radae C rve 1 a va
—gf(9,A%) AR AvE T/ be pade Ab AC AndAve -1 B Pt (25)



4. Gauge couplings of vectors to charged fermions,
—gAF x Uy, U or — gA™ x Uy, TV C  W(iy,D")V. (26)
If the fermions are massless and chiral, we may also have
p1F7
2

—gA% x Ty Ty, (27)

or in the Weyl fermion language
—gAj, X @Z)TLﬁuTawL or — gAj x wEUMTa@DR.
5. Yukawa couplings of scalars to fermions,
—y®; x UU  or — iydy x U, (28)

depending on the scalar’s parity — the ®; should be a true scalar and the ®2 a

pseudoscalar, — of for the chiral fermions
T * ok, /T *
—yQY o9 — Yy e Ylogy”. (29)

— And this is it! All other coupling types are non-renormalizable in 4 spacetime dimen-

sions.



In other spacetime dimensions d # 3 + 1, a coupling involving n; bosonic fields, n;

fermionic fields, and ng derivatives has dimensionality

d—2 d—1
A(d) :d—an — ny X 5 — Ngq
-2
= (4—7%— %nf —nd> - —nb+7;f x (d—4) (30)
-2
_ Ad=4) — E T2 gy

Since all interactions involve three or more fields, thus ny +ny > 3, the dimensionality of any
particular coupling always decreases with spacetime dimension d. Consequently, there are
more (super)renormalizable couplings with A > 0 in lower dimensions d =2+1ord=1+1

but fewer such couplings in higher dimensions d > 3 + 1. In particular,

e Ind > 6+ 1 dimensions all couplings have A < 0 and there are no renormalizable

couplings at all!

e In d = 5+ 1 dimensions there is a unique A = 0 coupling (x/6)®3, while all the
other couplings have A < 0. Consequently, the only renormalizable theories are scalar

theories with cubic potentials,

L= Z(%(ﬁu‘pa>2 — §mi®;) — %Zuijk@iq’j@k. (31)
i irjk

However, while such theories are perturbatively OK, they do not have stable vacua

since a cubic potential is always unbounded from below.

e In d = 4 + 1 dimensions, the (x/6)®3 coupling has positive A = —1—% while all the
other couplings have negative energy dimensions. Hence, the scalar theories (31) are
super-renormalizable (but non-perturbatively sick), while all other interactive QFTSs

are non-renormalizable.

* The bottom line is, in d > 3 + 1 dimensions there are no renormalizable theories with

stable vacua.

On the other hand, in lower dimensions d = 2+ 1 or d = 1 + 1 there are many more

(super)renormalizable A > 0. In particular, in d = 2 4+ 1 dimensions such couplings include:



O

Scalar couplings (Cy,/n!)®™ up to n = 6;

O

Gauge and Yukawa couplings like in 4D;

Yukawa-like couplings §®% x W involving 2 scalars;

O

* Chern—Simons couplings of non-abelian gauge fields to each other, and some other

exotic couplings, never mind the details.

Finally, in d = 1 + 1 dimensions there are infinite numbers of renormalizable and even
super-renormalizable couplings. Indeed, for d = 141 the bosonic fields have energy dimension
EY so A of a coupling does not depend on the number n; of bosonic fields it involves but

only on the numbers of derivatives and fermionic fields,
A:2—nd—%nf. (32)

Consequently, all scalar potentials V' (®) — including C),®" terms for any n, and even the
non-polynomial potentials — have A = 42, so any V(®) potential is super-renormalizable
in 2D. Likewise, all Yukawa-like couplings ®"WUW¥ have A = +1, so we may have terms like
Y (®) x T for any functions y; ;(®).

At the A = 0 level, we have renormalizable field-dependent kinetic terms
Liin = 30ij(9) x 0'¢' 9,07 (33)

with any Riemannian metrics g;j(¢) for the non-linear scalar field space, as well as a whole

bunch of fermionic terms with arbitrary scalar-dependent coefficients,

1 3! o S Yl A AT
Ly D 79715(@) x WA i, —id, | ¥ + Trjp(P) x 9,07 x Ak (34)
3

—I —K
+ AR rL(D) x U0 x Ty, k.

In addition, there are gauge couplings with arbitrary scalar-dependent ggauge(®), chiral cou-
plings to Weyl or Majorana-Weyl fermions, etc., etc. In String Theory, many of these
couplings show up the context of the 2D field theory on the world sheet of the string.



