
PHY–396 L. End-term Exam. Due Thursday, April 27, 2023.

Please do not waste time and paper by copying the posted homework solutions or supple-

mentary notes. If you need to use any homework result, simply reference the appropriate

question or equation and go ahead. Likewise, don’t re-derive anything I derived in class.

1. The first problem is about tree-level gluon scattering, gg → gg.

(a) Draw all tree diagrams for this process. Use crossing symmetry to write the net ampli-

tude as

M(ga1 , g
b
2, g

c
3, g

d
4) = Gabcd ×Ms + Gacdb ×Mt + Gadbc ×Mu (1)

where the Gabcd, etc., are group factors depending on the colors of the four gluons, while

the Ms, Mt, and Mu amplitudes depend on the gluons’ momenta and polarizations.

Thanks to the crossing symmetry,

Ms ≡ M(1, 2, 3, 4), Mt ≡ M(1, 3, 4, 2), Mu ≡ M(1, 4, 2, 3), (2)

for the same analytic function M applied to 3 different ordering of the four gluons. (For

simplicity, treat all 4 gluons as incoming, k1 + k2 + k3 + k4 = 0.)

(b) Show that group factor Gabcd has the same index symmetry as the Riemann tensor in

gravity,

Gabcd = −Gbacd = −Gabdc = +Gcdab, (3)

Gabcd + Gacdb + Gadbc = 0. (4)

Eqs. (3) should be obvious (if they are not, you have a wrong Gabcd), but eq. (4) takes

some work. To prove it, use the identity [[X, Y ], Z] + [[Y, Z], X ] + [[Z,X ], Y ] = 0.

(c) Sum / average the 4–gluon |amplitude|2 over all the colors and show that

|M|2 =
C2(G)

2 dim(G)
×

(
3|Ms|

2 + 3|Mt|
2 + 3|Mu|

2 − |Ms +Mt +Mu|
2
)
. (5)
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(d) Prove the weak Ward identity for the 4–gluon amplitude (1): If one gluon — say,

gluon#3 — has eµ3 = kµ3 while the other three gluons are transverse, (eiki) = 0 for

i = 1, 2, 4, then M = 0.

Hint: Show that in this case Ms = Mt = Mu, then use eq. (4).

Let’s change gears for a moment and consider the tree amplitude involving two gluons, a

ghost, and an antighost,

gh
d
4

g
a
1

gh c
3

g b
2

(e) Draw all tree diagrams for this process, calculate the net amplitude, and bring it to the

form

M̃net = M̃s ×Gabcd + M̃t ×Gacdb + M̃u ×Gadbc (6)

where Gabcd is the same function of the adjoint color indices as in parts (a–d), while M̃s,

M̃t, and M̃u are some functions of the four particle’s momenta and of the two gluon’s

polarizations. But unlike the 4-gluon amplitude, there are no crossing symmetries like

eq. (2) for the M̃s, M̃t, and M̃u.

Assume both gluons to be transversely polarized and treat all 4 momenta as incoming.

Now go back to the 4 gluon amplitude and suppose that only two gluons are transverse while

the other two have unphysical polarizations (longitudinal or temporal). Or rather, let the

two unphysical gluons have null polarization vectors, specifically

eµ3 = kµ3 = (ω3,k3), eµ4 =
(ω4,−k4)

2ω2
4

, e23 = e24 = 0, e3k3 = 0, e4k4 = +1. (7)
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(f) Show that in this case, the 4–gluon amplitude is exactly equal to the amplitude where

the longitudinal gluons are replaced with a ghost and an antighost,

gL

gT
g
L

g
T

=

gh

gT gh

g
T

Hint: show that for two physical and two unphysical gluon polarizations as in eq. (7)

Ms = Mc + M̃s , Mt = Mc + M̃t , Mu = Mc + M̃u , (8)

for the same Mc in all 3 cases, while the M̃s, M̃t, and M̃u are exactly as in part (e).

Then use eq. (4) similarly to part (d).

Finally, let’s calculate the amplitudes (2) and the partial cross-section for the four transverse

gluons. For simplicity, work in the center-of-mass frame and use linear polarizations for each

gluon, either ‖ to the plane of scattering or ⊥ to it. For the set of 4 gluons there are 16

choices of such polarizations, but the symmetries forbid some combinations and relate other

combinations to each other.

(g) Spell out which polarized gg → gg processes are forbidden and which are allowed. Write

down the symmetry relations between the allowed processes. How many of them are

independent?

(h) Calculate the amplitudes (2) and the partial cross-section for the simplest choice of

polarizations: all 4 gluons are polarized ⊥ to the scattering plane.

(⋆) Optional exercise, for extra credit:

Calculate the partial cross-sections for the other independent polarizations.

Warning: such amplitudes involve much messier algebra than the all–⊥ case (h), so use

Mathematica or calculate them numerically as functions of the scattering angle θ. If

you try to calculate them by hand, you are liable to make more algebraic mistakes then

you can fix during the time available for this exam.
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2. Three exams ago — in the Fall 2022 midterm — you saw topologically massive gauge fields

in 2+1 spacetime dimensions. Let me refresh your memory of how they work: In the abelian

case, the Lagrangian is

L = −
1

4
FµνF

µν +
M

4
ǫλµνA

λF µν (9)

where the second term — called the topological mass term — is not gauge invariant, but its

variance is a total derivative, so the action
∫
d3xL is gauge invariant. Also, the topological

mass term breaks the parity symmetry, so the massive photons have nontrivial SO(2) spins:

ms = +1 (and only ms = +1) for M > 0, or ms = −1 (and only ms = −1) for M < 0.

The non-abelian version of the topological mass term is the Chern–Simons term

k

4π
ǫλµν tr

(
Aλ ∂µAν +

2i

3
AλAµAν

)
(10)

where Aµ(a) = gAaµ(x)T
a is the (non-canonical) matrix-valued gauge field. In terms of

this field and its tension Fµν(x) = gF a
µν(x), the net Lagrangian of the topologically massive

Yang–Mills theory in 3D is

L = LYM + LCS = −
1

2g2
tr
(
FµνFµν

)
+

k

4π
ǫλµν tr

(
Aλ ∂µAν +

2i

3
AλAµAν

)

= −
1

2g2
tr
(
FµνFµν

)
+

k

8π
ǫλµν tr

(
AλFµν −

2i

3
AλAµAν

)
.

(11)

The mass of the gluons in this theory is M = kg2/4π; note that g2 has dimensionality of

mass in 3D, so the k coefficient — called the Chern–Simons level — is dimensionless. In

fact, k must be integer (positive, negative, or zero) to assure the gauge invariance of the eiS

— and hence of the path integral of the quantum theory — despite the gauge dependence of

the Chern–Simons term itself. Indeed, you should have seen 3 exams ago that the YM+CS

action
∫
d3xL is invariant under infinitesimal gauge transforms, but under a finite gauge

transform U(x) it changes by

∆S =
−k

12π

∫
d3x ǫλµν tr

(
U−1∂λU · U−1∂µU · U−1∂νU

)
. (12)

The integral here depends only on the topological properties of U(x) and its values are always

integer× 24π2, hence for an integer k — and only for an integer k — eiS is gauge invariant.
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In this exam, we shall focus on the quantum origin of the Chern–Simons term rather than

its effects on the semi-classical gauge fields. Specifically, we are going to induce an effective

Chern–Simons term for the gluons in the 3D QCD from the loop diagrams involving massive

quarks. For simplicity, let’s start with the 3D SU(N) gauge theory with a single fundamental

multiplet N of quarks (i.e., N colors, one flavor) and no tree-level CS term, thus

Lphys =
−1

2g2
tr
(
FµνFµν

)
+ Ψ(i 6D −m)Ψ. (13)

For the sake of definiteness, assume m > 0: it matters in 3D (or in any other odd spacetime

dimension) because the sign of a Dirac fermion’s mass breaks the Parity symmetry.

Beyond the tree level, parity violation in the quark sector yields parity-violating gluonic

amplitudes via quark loop diagrams, so the gluon sector of the theory also becomes parity

violating. Technically, this works through 3D Dirac matrices obeying γ0γ1γ2 = +i, and

similar relations in other odd dimensions. Consequently, 3D Dirac traces are different from

their 4D analogues:

tr(γµγν) = 2gµν ,

tr(γλγµγν) = 2iǫλµν 6= 0,

tr(γκγλγµγν) = 2(gκλgµν − gκµgλν + gκνgλµ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(14)

(a) Evaluate the one loop diagram

a
µ

b
ν

(15)

and show that for small gluon momenta |k| ≪ m, it yields

Σµa,νbψ loop(p) =
g2δab

8π

(
−ikλǫ

λµν +
kµkν − gµνk2

3m
+ O

(
k3

m2

))
. (16)
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(b) Similarly, show that for three external gluons with small momenta (compared to the

fermion’s mass m), the one-loop 1PI amplitude is

iV abc
λµν =

(a, λ) (b, µ)

(c, ν)

+

(a, λ) (b, µ)

(c, ν)

= −
ig3

8π
fabcǫλµν + O

(
k

m

)
.

(17)

(c) Show that for quark loops with four or more external gluons with small momenta, all

the one-quark-loop amplitudes are suppressed by negative powers of the quark mass m.

Now consider the Functional Integral for the d = 3 QCD. Let us integrate
∫∫
D[Ψ(x)]

∫∫
D[Ψ(x)] over the quark fields for fixed gauge fields Aaµ(x). The result of this integration is

an effective quantum theory of the gauge fields with Minkowski-space action

S[Aµ] = SYM[Aµ] + ∆S[Aµ] (18)

where

i∆S[Aµ] = log Det(i6D −m) = Tr log(i6D −m). (19)

(d) Expand the ∆S here into Feynman diagrams, then use the results of questions (a–c) to

show that in the large quark mass limit m → +∞,

∆S =
1

8π

∫
d3x

{
ǫλµν tr

(
Aλ ∂µAν + 2i

3
AλAµAν

)
+ O

(
1

m

)}
. (20)

Hence, the effective low-energy quantum theory for the gluons is precisely the topologi-

cally massive Yang–Mills theory (11) with Chern–Simons level k = +1
2
.

Since the half-integral Chern–Simons level k = +1
2 would break the gauge invariance of

the quantum theory, let’s consider a more general example. Namely, 3D QCD with several

flavors of massive quarks, some with mf > 0 and some with mf < 0 (in 3D, this makes a

difference). Let’s also have a tree-level Chern–Simons level k0.
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(e) Show that when we integrate out all the quarks, we end up with the net Chern–Simons

level

k = k0 +
#(mf > 0) − #(mf < 0)

2
. (21)

Note: consistency of the quantum theory requires an integer net CS level k rather than an

integer tree-level k0. Consequently, in theories with even Nf , the tree-level k0 should be

integer, but the theories with odd Nf should have half-integer k0 ∈ Z+ 1
2
.

7


