
GAUGE THEORIES

Gauge theories — abelian or non-abelian — are quantum theories of vector field Aa
µ(x)

whose interactions with each other and with other fields follows from a local symmetry. So

let me start these notes by explaining the difference between local and global symmetries:

⋆ A global symmetry — also called a rigid symmetry — has similar transformation of the

fields at all spacetime points x. For example, a global phase symmetry of a complex

scalar field Φ(x) acts as

Φ(x) → Φ′(x) = eiθΦ(x), same θ for all x. (1)

⋆ In a local symmetry — also called a gauge symmetry — the field transformations at

different points x have independent parameters. For example, a local phase symmetry

of a complex scalar field Φ(x) acts as

Φ(x) → Φ′(x) = eiθ(x)Φ(x), independent θ(x) at each x. (2)

• A point of terminology: What a physicist calls a global symmetry, a mathematician

would call a local symmetry and vice verse — a local symmetry to a physicist is a global

symmetry to a mathematician. The terms rigid symmetry and gauge symmetry help

avoid the confusion — both physicists and mathematicians agree to their meaning.

Abelian Example: Local Phase Symmetry.

Before we delve into non-abelian gauge theory, let me start with an abelian example.

Consider a complex scalar field Φ(x) with a classical Lagrangian

L = ∂µΦ∗∂µΦ − m2Φ∗Φ − λ

2
(Φ∗Φ)2, (3)

which has a global phase symmetry Φ′(x) = eiθΦ(x). In fact, the potential terms here Φ∗Φ

and (Φ∗Φ)2 have a local phase symmetry Φ′(x) = eiθ(x)Φ(x), but the kinetic term does not
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have this local symmetry. Indeed, under this would-be local symmetry

∂µΦ
′(x) = eiθ(x) × ∂µΦ(x) + Φ(x)×

[

∂µ
(

eiθ(x)
)

= ieiθ(x)∂µθ(x)
]

= eiθ(x) ×
(

∂µΦ(x) + iΦ(x)∂µθ(x)
)

,
(4)

hence

∂µΦ
∗′(x)∂µΦ′(x) =

(

∂µΦ
∗(x)− iΦ∗(x)∂µθ(x)

)(

∂µΦ(x) + iΦ(x)∂µθ(x)
)

6= ∂µΦ∗(x)∂µΦ(x).

(5)

However, we may repair this problem by replacing the ordinary field derivatives ∂µΦ and ∂µΦ
∗

with the covariant derivatives DµΦ and DµΦ
∗ which transform under the local symmetry

just like the field Φ and Φ∗ themselves:

Φ(x) → e+iθ(x)Φ(x), DµΦ(x) → e+iθ(x)DµΦ(x),

Φ∗(x) → e−iθ(x)Φ∗(x), DµΦ
∗(x) → e−iθ(x)DµΦ

∗(x).
(6)

Given such covariant derivatives, the Lagrangian

L = DµΦ∗DµΦ − V (Φ∗Φ) (7)

would be invariant under the local rather than global phase symmetry.

To make the covariant derivatives, we need a connection — a 4-vector field Aµ(x) un-

dergoing a gauge transform parametrized by the same θ(x) as the local phase symmetry,

thus

Φ′(x) = exp(+iθ(x))× Φ(x),

Φ∗′(x) = exp(−iθ(x))× Φ∗(x),

A′
µ(x) = Aµ(x) − ∂µθ(x)















for the same θ(x). (8)

Given such combined phase/gauge transformations of the fields, the covariant derivatives

DµΦ(x) = ∂µΦ(x) + iAµ(x)Φ(x),

DµΦ
∗(x) = ∂µΦ

∗(x) − iAµ(x)Φ
∗(x),

(9)
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transform covariantly according to eq. (6). Indeed,

(DµΦ)
′ = ∂µΦ

′ + iA′ × Φ′ = ∂µ
(

eiθΦ
)

+ i
(

A − ∂µθ
)

× eiθΦ

= eiθ
(

∂µφ + iΦ∂µθ + iAµ × Φ − i∂µθ × Φ
)

= eiθ
(

∂µφ + iAµ × Φ
)

= eiθ ×DµΦ,

(10)

and likewise

(DµΦ
∗)′ = ∂µΦ

∗′ − iA′ × Φ∗′ = ∂µ
(

e−iθΦ∗
)

− i
(

A − ∂µθ
)

× e−iθΦ∗

= e−iθ
(

∂µΦ
∗ − iΦ∗∂µθ − iAµ × Φ∗ + i∂µθ × Φ∗

)

= e−iθ
(

∂µΦ
∗ − iAµ × Φ∗

)

= e−iθ ×DµΦ
∗.

(11)

More generally, consider a theory with multiple complex fields ϕa(x); these fields may

be scalar, fermionic, vector, whatever, as long as they have definite charges qa WRT to the

phase symmetry. Under the local phase symmetry, all these fields and the connection Aµ(x)

transform according to

ϕ′
a(x) = exp(+iqaθ(x))× ϕa(x),

ϕ∗′
a (x) = exp(−iqaθ(x))× ϕ∗

a(x)

〈〈ϕ∗
a has charge −qa 〉〉,

A′
µ(x) = Aµ(x) − ∂µθ(x),



























all for the same θ(x). (12)

Under these transformation laws, the derivatives

Dµϕa = ∂µϕa + iqaAµ × ϕa , Dµϕ
∗
a = ∂µϕ

∗
a − iqaAµ × ϕ∗

a , (13)

are covariant:

(

Dµϕa(x)
)′

= exp(+iqaθ(x))×Dµϕa(x),
(

Dµϕ
∗
a(x)

)′
= exp(−iqaθ(x))×Dµϕ

∗
a(x). (14)

For example, let’s identify the connection Aµ(x) with the electromagnetic field Aµ(x) and

let’s couple it to a bunch of scalar fields Φa(x) of electric charges qa governed by the net
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Lagrangian

L = −1
4FµνF

µν +
scalars
∑

a

DµΦ
∗
aD

µΦa − V (scalars). (15)

As long as the scalar potential in this Lagrangian is invariant under the global phase sym-

metry, the net Lagrangian would be invariant under the local phase symmetry thanks to the

covariance of the derivatives Dµ.

Algebra of Covariant Derivatives

• Multiple covariant derivatives of charged fields are all covariant:

(

DµDνϕa(x)
)′

= exp(iqaθ(x))×DµDνϕa(x),
(

DλDµDνϕa(x)
)′

= exp(iqaθ(x))×DλDµDνϕa(x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(16)

• Leibniz rule

Dµ(ϕa × ϕb) = (Dµϕa)× ϕb + ϕa × (Dµϕb) for q(ϕa × ϕb) = qa + qb . (17)

Indeed,

Dµ(ϕa × ϕb) = ∂µ(ϕa × ϕb) + i(qa + qb)Aµ × ϕa × ϕb

= (∂µϕa)× ϕb + ϕa × (∂µϕb) + iqaAµϕa × ϕb + ϕa × iqbAµϕb

= (Dµϕa)× ϕb + ϕa × (Dµϕb).
(18)

◦ In particular, for qa + qb = 0 the product ϕa × ϕb is neutral, thus

(Dµϕa)× ϕb + ϕa × (Dµϕb) = ordinary ∂µ(ϕa × ϕb), (19)

which allows us to integrate by parts:

∫

d4x (Dµϕa)× ϕb +

∫

d4xϕa × (Dµϕb) =

∫

d4x ∂µ(ϕa × ϕb)

=

∫

boundary

d3xnµ(ϕa × ϕb)

usually = 0.

(20)

For example, the kinetic term for a charged scalar field Φ can be integrated by parts
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as
∫

d4x (DµΦ
∗)(DµΦ) = −

∫

d4xΦ∗(D2Φ) = −
∫

d4x (D2Φ∗)Φ. (21)

◦ Similarly, given a Lagrangian for the charged fields as an explicit function of fields and

their covariant derivatives (rather than ordinary derivatives)

Lcharged(ϕ,Dµϕ) where ϕa run over all charged fields and their conjugates, (22)

we may derive manifestly-covariant Euler–Lagrange equations by integrating by parts

the infinitesimal action variation:

δS =

∫

d4x
∑

a

(

∂L
∂ϕa

× δϕa +
∂L

∂(Dµϕa)
×Dµ(δϕa)

)

〈〈 integrating by parts 〉〉

=

∫

d4x
∑

a

δϕa(x)×
(

∂L
∂ϕa

− Dµ

(

∂L
∂(Dµϕa)

))

,

(23)

hence the field configuration minimizing the classical action obeys

∀a : Dµ

(

∂L
∂(Dµϕa)

)

− ∂L
∂ϕa

= 0. (24)

In particular, the charged scalar fields with the Lagrangian

L = −1
4FµνF

µν +

scalars
∑

a

DµΦ
∗
aD

µΦa − V (scalars) (25)

obey

∀a : DµD
µΦ∗

a +
∂V

∂Φa
= 0 and DµD

µΦa +
∂V

∂Φ∗
a

= 0. (26)

Note however that writing the Lagrangian L(ϕ,Dµϕ) as a function of fields and their

covariant derivatives hides its dependence of the EM potential Aµ, which we need for
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the Maxwell equation

∂µF
µν = Jν where Jν = − ∂Lnet

∂Aν

∣

∣

∣

∣

@fixed

Fµν ,ϕ,∂µϕ

. (27)

In terms of the covariant derivatives of the charged fields

∂(Dµϕa)

∂Aν
= iqaδ

ν
µϕa , (28)

hence

Jν = −∂L(ϕ,Dϕ)

∂Aν
= −i

∑

q

∂L
∂(Dνϕa)

× qaϕa . (29)

In particular, for the charged scalar fields with the Lagrangian (25), the electric current

is

Jν =
∑

a

(

−iqaΦa ×DνΦ∗
a + iqaΦ

∗
a ×DνΦa

)

. (30)

Note manifest invariance of this current under the local phase symmetry!

⋆ But the covariance of derivatives Dµ has its price: unlike the ordinary derivatives ∂µ,

the covariant derivatives Dµ do not commute with each other, DµDν 6= DνDµ. Indeed,

DµDνϕ = (∂µ + iqAµ)(∂ν + iqAν)ϕ

= ∂µ∂νϕ + iqAµ × ∂νϕ + iqAν × ∂µϕ + iq(∂µAν)× ϕ − q2AµAν × ϕ
(31)

where the blue terms on the RHS are symmetric WRT µ ↔ ν but the red term is not

symmetric. Consequently,

DµDνϕ − DνDµϕ = iq(∂µAν − ∂νAµ)× ϕ = iqFµν × ϕ, (32)

or in the operator language

[Dµ, Dν ] = iFµν × Q̂ (33)

where Q̂ is the electric charge operator, Q̂ϕ = qϕ.
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Non Abelian Example: Local SU(N) Symmetry

Take N free complex scalar fields φ1, . . . , φN of the same mass. The Lagrangian

L = ∂µφ
∗
j∂

µφj − m2φ∗jφ
j 〈〈 implicit

∑

j 〉〉 (34)

is invariant under global symmetries which mix the fields with each other,

φj′(x) = U j
kφ

k(x), φ∗′j (x) =
(

U†
)k

j
φ∗k(x) 〈〈 implicit

∑

k 〉〉 (35)

for a unitaryN×N matrix ‖U j
k‖. Such matrices form a non-abelian group called U(N), hence

the U(N) group of symmetries of the N complex fields. Actually, the free Lagrangian (34)

has a bigger symmetry group SO(2N) — real rotations of 2N real fields ReΦj and ImΦj

into each other, but only the U(N) symmetries (35) preserve the distinction between the

particles (created by the φ̂†j fields) and the antiparticles (created by the φ̂j fields) as well as

the Lagrangian (34).

To make our notations for the U(N) symmetries (35) more compact, let’s assemble the

φj(x) fields into a column vector Φ(x) of length N while the complex conjugate fields φ∗j (x)

form a row vector of the same length,

Φ(x)
def
=







φ1(x)
...

φN (x)






, Φ†(x)

def
= (φ∗1(x) · · · φ∗N (x) ) . (36)

In terms of these complex vectors, the global symmetries (35) act by matrix multiplication,

Φ′(x) = UΦ(x), Φ†′(x) = Φ†(x)U†, (37)

and leave the Lagrangian

L = ∂µΦ
†∂µΦ − m2Φ†Φ (38)

invariant because

U†U = 1 =⇒ Φ′†Φ′ = Φ†U†UΦ = Φ†Φ (39)

and likewise for the kinetic term.
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If we want to promote the global symmetries (37) to local symmetries

Φ′(x) = U(x)Φ(x), Φ†′(x) = Φ†(x)U†(x), independent U(x) ∈ U(N) at each x,

(40)

we would need to replace the ordinary derivatives ∂µ in the Lagrangian with the covariant

derivatives Dµ such that

D′
µΦ

′(x) = U(x)DµΦ(x), D′
µΦ

†′(x) =
(

DµΦ
†(x)

)

U†(x). (41)

Given such covariant derivatives, the Lagrangian

L = (DµΦ
†)(DµΦ) − m2Φ†Φ (42)

would be invariant under the local symmetries (40).

The derivatives covariant WRT local U(N) symmetry have form

DµΦ(x) = ∂µΦ(x) + iAµ(x)Φ(x), DµΦ
†(x) = ∂µΦ

†(x) − iΦ†(x)A†
µ(x) (43)

for a matrix-valued connection Aµ(x). In other words, the connection is an N × N matrix

‖Aj
µ,k(x)‖ of vector fields, and the covariant derivatives (43) act on the component fields φj

and φ∗j as

Dµφ
j(x) = ∂µφ

j(x) + iAj
µ,k(x)φ

k(x), Dµφ
∗
j (x) = ∂µφ

∗
j(x) − iA∗k

µ,j(x)φ
∗
k(x). (44)

Similar to the abelian case, the local unitary symmetry of the φj(x) and φ∗j fields should

be accompanied by the gauge transform of the vector fields Aj
µ,k(x), but the specific form of

this gauge transform is more complicated than its abelian counterpart. Indeed, to achieve

the covariance of the derivatives (43), we need

(

DµΦ
)′

= ∂µ(Φ
′ = UΦ) + iA′

µ(Φ
′ = UΦ) = U∂µΦ + (∂µU)Φ + iA′

µUΦ

=

U DµΨ = U∂µΦ + iUAµΦ,
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and hence

iA′
µUΦ = iUAµΦ − (∂µU)Φ. (45)

To make sure this relation works for any complex N–vector Φ(x), we need

iA′
µ(x)U(x) = iU(x)Aµ(x) − ∂µU(x), (46)

so the non-abelian gauge transform of the matrix-valued connection Aµ(x) works according to

A′
µ(x) = U(x)Aµ(x)U

−1(x) + i(∂µU(x))U−1(x). (47)

Note: the first term on the RHS is peculiar to the non-abelian gauge transforms — in the

abelian case, it would be simply Aµ(x) — while the second term generalizes the −∂µθ(x).

Indeed, for N = 1 a unitary 1 × 1 matrix is simply a unimodular complex number u = eiθ.

Consequently, the U(1) symmetry group is the abelian group of phase symmetries, while

i(∂µu)× u−1 = i(∂µe
iθ)× e−iθ = −∂µθ, (48)

hence

A′
µ(x) = Aµ(x) − ∂µθ(x). (49)

Next, let’s take a closer look at the non-abelian vector fields. A priori, the connection

Aµ(x) is a complexN×N matrix of vector fields, which is equivalent to 2N2 real vector fields.

However, we only need the Hermitian part of that matrix, A†
µ = Aµ, which is equivalent to

N2 real vector fields. Indeed, the second term in eq. (47) is always Hermitian,

[

i(∂µU)U−1
]†

= −i
(

U−1
)†(

∂µU
†
)

〈〈 by unitarity of U , U† = U−1 〉〉

= −iU
(

∂µU
−1
)

= −iU
(

−U−1(∂µU)U−1
)

= +i(∂µU)U−1,

(50)

9



hence IF Aµ is Hermitian THEN so is A′
µ:

[

UAµU
−1
]†

=
(

U−1
)†A†

µU
† = UAµU

−1

⇐
=

[

A′
µ = UAµU

−1 + i(∂µU)U−1
]†

= UAµU
−1 + i(∂µU)U−1 = A′

µ .

(51)

Moreover, the unitary symmetry group U(N) is a direct product of SU(N) — the group

of unitary matrices with unit determinants — and the U(1) group of overall phases,

any U ∈ U(N) is U = eiθ × Ũ where det(Ũ) = 1 and θ =
arg(det(U))

N
. (52)

In terms of the scalar fields φj(x), the U(1) is the common phase symmetry — with the

same phase eiθ for all the φj, — while the SU(N) symmetries mix the fields with each other.

Consequently, the SU(N) and the U(1) connections are completely independent from each

other. Specifically, the U(1) connection AU(1)
µ is proportional to the unit matrix, while the

SU(N) connection is a traceless matrix. Indeed,

as long as detU(x) ≡ 1 and tr(Aµ(x)) ≡ 0, (53)

tr
(

−i(∂µU)U−1
)

= −i∂µ tr
(

log(U)
)

= −i∂µ log
(

det(U) = 1
)

= 0, (54)

tr
(

UAµU
−1
)

= tr
(

Aµ

)

= 0, (55)

hence tr
(

A′
µ(x)

)

= 0. (56)

The complete independence of the SU(N) and U(1) factors of the unitary group U(N)

means that either factor may be a local or a global symmetry independently of the other

factor. In particular, a theory may have a local SU(N) symmetry while the U(1) remains

a global phase symmetry, and that’s what I am going to assume through the rest of this

section. Consequently, there is no U(1) connection, while the SU(N) connection Aµ is a

traceless Hermitian matrix equivalent to N2−1 real vector fields Aa
µ(x), a = 1, . . . , (N2−1).
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For example, for N = 2 there are 3 independent traceless Hermitian matrices, namely

the Pauli matrices

τ1 =

(

0 1

1 0

)

, τ2 =

(

0 −i

+i 0

)

, τ3 =

(

+1 0

0 −1

)

. (57)

Consequently, the SU(2) connection Aµ(x) can be written as

[

Aµ(x)
]j

k
=

∑

a=1,2,3

Aa
µ(x)×

(

τa

2

)j

k

(58)

in terms of 3 ordinary real vector fields Aa
µ(x).

For N ≥ 3, there are N2 − 1 independent traceless Hermitian matrices, for example the

Gell-Mann matrices λa. Here is their explicit forms for N = 3:

λ1 =





0 1 0

1 0 0

0 0 0



 , λ2 =





0 −i 0

+i 0 0

0 0 0



 , λ3 =





+1 0 0

0 −1 0

0 0 0



 ,

λ4 =





0 0 1

0 0 0

1 0 0



 , λ5 =





0 0 −i

0 0 0

+i 0 0



 , λ6 =





0 0 0

0 0 1

0 1 0



 , λ7 =





0 0 0

0 0 −i

0 +i 0



 ,

λ8 =
1√
3





1 0 0

0 1 0

0 0 −2



 . (59)

Consequently, the SU(N) connection expands into N2 − 1 ordinary real vector fields as

[

Aµ(x)
]j

k
=

N2−1
∑

a=1

Aa
µ(x)×

(

λa

2

)j

k

(60)
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For future reference, here are some properties of the Gell-Mann matrices:

• Similar to the Pauli matrices τa, the Gell-Mann matrices λa are Hermitian, traceless,

and normalized to tr(λaλb) = 2δab.

• [λa, λb] = 2i
∑

c f
abcλc for some totally antisymmetric structure constants f [abc] of the

SU(N) Lie algebra. This commutation relation generalizes the isospin commutation

relation [τa, τ b] = 2i
∑

c ǫ
abcτ c for the Pauli matrices.

◦ Unlike the Pauli matrices, the Gell-Mann matrices do not anticommute with each other

and do not square to unit matrices, {λa, λb} 6= 2δab1N×N . Instead, for N ≥ 3 we have

{

λa, λb
}

=
4δab

N
1N×N +

∑

c

2dabcλc (61)

for some totally symmetric coefficients d(abc).

Now let’s go back to the component vector fields Aa
µ(x). Earlier in this section I wrote

down the non-abelian gauge transform of the vector fields in the matrix language, but trans-

lating it in terms of the component fields is rather painful. Or rather, it is quite painful for

finite local symmetries U(x), but it becomes much easier for the infinitesimal symmetries:

In matrix language,

U(x) = exp(iΛ(x)) = 1 + iΛ(x) + O(Λ2) (62)

for some infinitesimal matrix-valued Λ(x). To keep the U(x) unitary and det(U) = 1, the

Λ(x) matrix should be Hermitian and traceless, hence

Λ(x) = Λa(x)× λa

2
〈〈 implicit

∑

a 〉〉 (63)

for some infinitesimal real numbers Λa(x). Under such infinitesimal local symmetries, the

scalar fields φj(x) and φ∗j(x) transform into

φj′(x) = φj(x) + iΛa(x)

(

λa

2

)j

k

φk(x) + O(Λ2φ),

φ∗′j (x) = φ∗j(x) − iΛa(x)φ∗k(x)

(

λa

2

)k

j

+ O(φ∗Λ2).

(64)
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At the same time, for the vector fields we have

i(∂µU)U−1 = −∂µΛ(x) + O(Λ2), (65)

U Aµ U
−1 =

(

1 + iΛ +O(Λ)2
)

Aµ

(

1− iΛ +O(Λ2))
)

= Aµ + i[Λ,Aµ] + O(AΛ2), (66)

and hence to first order in Λ,

A′
µ(x) = Aµ(x) + i[Λ(x),Aµ(x)] − ∂µΛ(x). (67)

In components,

i[Λ(x),Aµ(x)] = Λb(x)×Ac
µ(x)× i

[

λb

2
,
λc

2

]

= Λb(x)×Ac
µ(x)×

(

−f bca
λa

2
= −fabc

λa

2

)

= −
(

fabcΛb(x)Ac
µ(x)

)

× λa

2
,

(68)

hence

A′
µ(x) =

λa

2
×
(

Aa
µ(x) − fabcΛb(x)Ac

µ(x) − ∂µΛ
a(x)

)

(69)

and therefore

Aa′
µ (x) = Aa

µ(x) − fabcΛb(x)Ac
µ(x) − ∂µΛ

a(x). (70)

Non Abelian Tension Fields

In an abelian U(1) gauge theory such as QED, the covariant derivatives Dµ do not

commute with each other, and their commutators are related to the EM tensions fields as

[Dµ, Dν ]φ(x) = iqFµν(x)φ(x). In non-abelian gauge theories, there is a similar relation in

the matrix language,

[Dµ, Dν ]Φ(x) = iFµν(x)Φ(x) (71)

where Fµν(x) is the matrix-valued tensor of tension fields. But the relation of this tensor

to the connection Aµ(x) is more complicated than in the abelian case. To see how it works,
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let’s spell out the double covariant derivative

DµDνΦ = (∂µ + iAµ)(∂ν + iAν)Φ

= ∂µ∂νΦ + iAµ × ∂νΦ + iAν × ∂µΦ + i(∂µAν)× Φ − AµAν × Φ.
(72)

On the second line here I have color-coded in blue the terms which are symmetric WRT to

the µ ↔ ν interchange, and in red the terms which are not symmetric. Note that the last

term is not symmetric because the matrices Aµ and Aν generally do not commute with each

other. Consequently,

DµDνΦ − DνDµΦ = i(∂µAν)× Φ − i(∂νAµ)× Φ − AµAν × Φ + AνAµ × Φ, (73)

or in other words,

[Dµ, Dν ]Φ(x) = iFµν(x)× Φ(x) (74)

where

Fµν(x) = ∂µAν(x) − ∂νAµ(x) + i[Aµ(x),Aν(x)]. (75)

Or in components,

Fµν(x) = Fa
µν(x)×

λa

2
for Fa

µν(x) = ∂µAa
ν(x) − ∂νAa

µ(x) − fabcAb
µ(x)Ac

ν(x). (76)

Unlike their abelian counterparts, the non-abelian tensions (75) are not gauge invariant.

Instead, they transform covariantly under the local SU(N) symmetries: In matrix language

F ′
µν(x) = U(x)Fµν(x)U

−1(x), (77)

while in components, the Fa
µν(x) form an adjoint multiplet of the SU(N) symmetry,

Fa′
µν(x) = Rab

adj(U(x))×F b
µν(x) (78)

where

Rab
adj(U) = 1

2 tr
(

λaUλbU−1
)

(79)

is the adjoint representation of U ∈ SU(N).
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Eq. (77) for the non-abelian tension fields may be derived directly from eq. (75) and

the non-abelian gauge transform (47) of the vector field Aµ(x) — this is a part of your new

homework set#5. But it is much easier to derive eq. (77) from the commutator (74) and

the covariance of the derivative Dµ. Indeed, multiple derivatives like DµDνΦ(x) are just as

covariant as single derivatives,

for Φ′(x) = U(x)Φ(x), D′
µD

′
νΦ

′(x) = U(x)DµDνΦ(x) =⇒

=⇒
[

D′
µ, D

′
ν ]Φ

′(x) = U(x)
[

Dµ, Dν ]Φ(x),
(80)

hence in light of eq. (74),

iF ′
µν(x)× U(x)Φ(x) = U(x)× iFµν(x)× Φ(x), (81)

and to make sure this relation works for any Φ(x) we need

F ′
µν(x) = U(x)×Fµν(x)× U−1(x). (77)

As to the component form (78) of this transformation, using 1
2 tr(λ

aλb) = δab we get

Fa′
µν(x) = tr

(

λaF ′
µν(x)

)

= tr
(

λaU(x)Fµν(x)U
−1(x)

)

= 1
2 tr
(

λaU(x)λbU−1(x)
)

× F b
µν(x)

= Rab
adj(U(x))×F b

µν

(78)

where

Rab
adj(U) = 1

2 tr
(

λaUλbU−1
)

. (79)

As a matrix, the ‖Rab
adj(U)‖ is a real orthogonal (N2−1)×(N2−1) matrix, and as a function

of U it’s the adjoint representation of the SU(N) symmetry group,

∀U1, U2 ∈ SU(N) : Radj(U2U1) = Radj(U2)×Radj(U1). (82)

Proof of reality: For any matrices A,B, . . . , Z,
[

tr(AB · · ·Z)
]∗

= tr(Z† · · ·B†A†), hence

for hermitian matrices λa and λb and a unitary matrix U

[

tr(λaUλbU−1)
]∗

= tr
(

(U−1)†(λb)†U†(λa)†) = tr(UλbU−1λa) = tr(λaUλbU−1),

which means
[

Rab
adj(U)

]∗
= Rab

adj(U).
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Lemma: for any N ×N matrices A and B,

∑

a

tr(λaA)× tr(λaB) = 2 tr(AB) − 2

N
tr(A)× tr(B). (83)

Proof or orthogonality:

(

R⊤
adj(U)× Radj(U)

)bc
=
∑

a

Rab
adj(U)× Rac

adj(U)

=
∑

a

1
2 tr
(

λa(UλbU−1)
)

× 1
2 tr
(

λa(UλcU−1)
)

〈〈 by Lemma (83) 〉〉 = 1
2 tr(UλbU−1 × UλcU−1) − 1

2N
tr(UλbU−1)× tr(UλcU−1)

= 1
2 tr(λ

bλc) − 1

2N
tr(λb)× tr(λc) = δbc − 0,

(84)

which means R⊤
adj(U)× Radj(U) = 1.

Proof of the group law (82):

(

Radj(U2)× Radj(U1)
)ab

=
∑

c

Rac
adj(U2)× Rcb

adj(U1)

=
∑

c

1
2 tr
(

λc(U−1
2 λaU2)

)

× 1
2 tr
(

λc(U1λ
bU−1

1 )
)

〈〈 by Lemma (83) 〉〉 = 1
2 tr
(

(U−1
2 λaU2)× (U1λ

bU−1
1 )
)

− 1

2N
tr(U−1

2 λaU2)× tr(U1λ
bU−1

1 )

= 1
2 tr
(

λaU2U1λ
bU−1

1 U−1
2

)

− 1

2N
tr(λa)× tr(λb)

= 1
2 tr
(

λa(U2U1)λ
b(U2U1)

−1
)

− 0× 0

= Rab
adj(U2U1),

(85)

thus Radj(U2)× Radj(U1) = Radj(U2U1).

Example: for the SU(2) isospin symmetry, U is the iso-doublet representation of some

iso-space rotation while Rab
adj(U) is the iso-vector representation of the same rotation.

Later in class I shall tell you more about the adjoint multiplets as well as other kinds of

multiplets of various symmetries, and in your new homework#5 you will learn more about
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the fields in adjoint multiplets of SU(N) — and in particular about the tension fields Fa
µν(x).

But meanwhile, we may use orthogonality of the ‖Rab
adj‖ matrices to form a gauge-invariant

quadratic combination of the tension fields, namely

tr
(

FµνFµν
)

= Fa
µνF bµν ×

(

tr

(

λa

2

λb

2

)

=
δab

2

)

=
1

2
Fa
µνFaµν . (86)

The invariance of this combination follows from

(

Fa
µνFaµν

)′
= Rab

adj(U)F b
µν ×Rac

adj(U)F cµν = δbc × F b
µνF cµν = Fa

µνFaµν , (87)

or in matrix form

tr
(

F ′
µνFµν′

)

= tr
(

UFµνU
−1 × UFµνU−1

)

= tr
(

FµνFµν
)

. (88)

Yang–Mills Theory

Yang–Mills theory is the theory of non-abelian gauge fields Aa
µ(x) interacting with each

other; there are no other fields. The physical Lagrangian of the theory is simply

L = − 1

2g2
tr
(

FµνFµν
)

= − 1

4g2
Fa
µνFaµν (89)

for

Fa
µν

def
= ∂µAa

ν − ∂νAa
µ − fabcAb

µAc
ν . (90)

The 1/g2 factor in the Yang–Mills Lagrangian (89) makes for a non-canonical normalization

of the gauge fields Aa
µ. To get the canonically normalized vector fields, we rescale

Aa
µ(x) =

1

g
Aa

µ(x) and F a
µν(x) =

1

g
Fa
µν(x), (91)

hence

L = −1
4F

a
µνF

aµν (92)
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for

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν . (93)

For small g ≪ 1, we may treat the non-abelian parts of F a
µν as small perturbation, hence

L = −1
4

(

∂µA
a
ν − ∂νA

a
µ

)2
+

g

2

(

∂µA
a
ν − ∂νA

a
µ

)

× fabcAbµAcν − g2

4
fabcfadeAb

µA
c
νA

dµAeν

(94)

where the quadratic term (marked blue) describes N2 − 1 species of free photon-like gluons,

while the cubic and the quartic terms (marked red) describe the interactions between the

gluon fields.

Adding Matter

As an example of a more general gauge theory, let’s couple the Yang–Mills vector fields

Aa
µ(x) to N complex scalar fields φj(x) subject to the same local SU(N) symmetry. The

overall Lagrangian is

Lnet = LYM + LΦ (95)

where LYM is the Yang–Mills Lagrangian exactly as in eqs. (89) or (94), while

LΦ = DµΦ
†DµΦ − m2Φ†Φ. (96)

In terms of the canonically normalized vector fields Aa
µ(x) we have

DµΦ = ∂µΦ + igAa
µ(

1
2λ

a)Φ, DµΦ
† = ∂µΦ

† − igAa
µΦ

†(12λ
a), (97)

hence expanding the scalar fields’ Lagrangian LΦ in powers of the gauge coupling g, we get

LΦ = ∂µΦ
†∂µΦ − m2Φ†Φ

+ gAa
µ ×

(

i∂µΦ†(12λ
a)Φ − Φ†(12λ

a)∂µΦ
)

+ g2Aa
µA

bµ × Φ†
(

1
2{1

2λ
a, 12λ

b}
)

Φ.

(98)

Again, the blue color marks the quadratic terms describing N free complex fields while red

marks the cubic and quartic terms describing the interactions of the scalars with the gauge

fields. Note that the same coupling g which governs how strongly the gauge fields interact
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with each other also governs the strength of their interactions with the scalar fields. Actually,

for any kind of a field — scalar, fermion, vector, whatever, — which happens to interact with

the gauge fields of a particular local symmetry, the strength of all such interactions is governed

by the same parameter g.

General Gauge Symmetries

Thus far I have focused on the SU(N) gauge theories, but let us now consider the more

general gauge symmetries. As I explained in class on 9/27 — but unfortunately did not

include in these notes — a non-abelian gauge symmetry group G must be compact and

semi-simple. In terms of the Lie algebra G of the group’s generators T̂ a,

[

T̂ a, T̂ b
]

= ifab c T̂
c 〈〈 implicit

∑

c 〉〉, (99)

this means that the Killing norm of the generators

gab = −fac d f
bd

c (100)

must be a non-degenerate positive-definite matrix.

A semi-simple group G means either a simple group or a direct product of simple groups;

for the moment, let’s focus on the simple gauge groups, and then consider the product groups

in a later section. For a simple compact group G, we may choose a basis of its generators

T̂ a such that

Killing gab = (constant)× δab. (101)

In this basis, we may raise all the generator indices a, b, c, . . ., so the quadratic Casimir

operator becomes Ĉ2 = T̂ aT̂ a (implicit
∑

a); also, the structure constants fabc become

totally antisymmetric in all 3 indices.

With this group theory in mind, consider the non-abelian gauge theory with a most

general (but simple and compact) gauge group G. The gauge connection Aµ(x) of this

theory is Lie-algebra valued. That is, for each generator T̂ a there is a vector field Aa
µ(x),
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which acts as a component of the Lie-algebra-valued connection

Aµ(x) = gAa
µ(x)× T̂ a. (102)

The curvature for this connection is the Lie-algebra-valued antisymmetric tensor field

Fµν(x) = ∂µAν(x) − ∂νAµ(x) + i
[

Aµ(x),Aν(x)
]

, (103)

or in components

Fµν(x) = gF a
µν(x)× T̂ a for F a

µν(x) = ∂µA
a
ν(x) − ∂νA

a
µ(x) − gfabcAb

µ(x)A
c
ν(x). (104)

The local symmetries are parametrized by u(x) ∈ G — for each x there is an element of

the gauge group G. For infinitesimal symmetries

u(x) = exp
(

iΛa(x)T̂ a
)

= 1 + iΛa(x)× T̂ a + O(Λ2) (105)

for some infinitesimal real parameters Λa(x). Under such infinitesimal symmetries, the gauge

fields Aa
µ(x) transform inhomogeneously as

δAa
µ(x) = −1

g
∂µΛ

a(x) − fabcΛb(x)Ac
µ(x) (106)

while the tension fields F a
µν(x) transform homogeneously as

δF a
µν(x) = −fabcΛb(x)F c

µν(x) (107)

and the Yang–Mills Lagrangian

LYM = −1
4F

a
µνF

a,µν (108)

for the gauge fields remains invariant.

20



By the way, for a non-compact gauge group G we have similar formulae for the connec-

tions, curvatures, and the component fields, but the gauge-invariant analogue of the Yang–

Mills Lagrangian (108) would not have positive kinetic energies for all the fields. Instead,

for a mixed-signature Killing norm gab we would have

Aµ(x) = gAa,µ(x)× T̂ a, (109)

Fµν = gFa,µν(x)× T a, (110)

Fa,µν(x) = ∂µAa,ν(x) − ∂νAa,µ(x) − gfbc aAb,µ(x)Ac,ν(x), (111)

and

LYM = −1
4g

abFa,µνF
µν
b . (112)

A mixed-signature metric gab in this formula would give negative signs of kinetic energies

for some of the fields and hence a sick Hamiltonian without a ground state. And that’s why

the gauge group G should be compact — to avoid this trouble.

Besides the gauge fields, most gauge theories also have some kinds of matter fields:

scalars, fermions, whatever. Most generally, all such fields must form complete multiplets

of the gauge symmetry group G. In each such multiplet (m), the generators T̂ a of G are

represented by |m| × |m| matrices T a
(m) obeying the same commutation relations as the

generators themselves,

[

T a
(m), T

b
(m)

]

= ifabc × T c
(m) . (113)

Note: all such representations must be finite and unitary — in order to allow gauge-invariant

kinetic terms that’s positive for all the fields — and that’s another reason why the gauge

groups G should be compact.

Under infinitesimal gauge symmetries, a field Ψα belonging to some multiplet (m) is

mixed with other fields Ψβ belonging to the same multiplet — but not with fields in any

other multiplets, even if they are of the same type — according to

δΨα(x) = iΛa(x)
[

T a
(m)

]α

β
Ψβ(x). (114)

The covariant derivatives DµΨ
α also mix up fields belonging to the same multiplet (m),
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specifically

DµΨ
α(x) = ∂µΨ

α(x) + igAa
µ(x)

[

T a
(m)

]α

β
Ψβ(x). (115)

Note different matrices T a
(m) for covariant derivatives of fields belonging to different multiplet

types; this is similar to different fields having different electric charges in QED.

Let’s verify the covariance of the derivatives (115) WRT infinitesimal gauge symmetries.

In matrix language — where we treat the whole multiplet of fields Ψα as a column vector

Ψ, we have

δDµΨ = Dµ(δΨ) + (δDµ)Ψ

= ∂µδΨ + igAa
µT

a
(m) × δΨ + igδAa

µ × T a
(m)Ψ

= iΛaT a
(m) × ∂µΨ + i(∂µΛ

a)× T a
(m)Ψ − gAa

µT
a
(m) × ΛbT b

(m)Ψ

− i(∂µΛ
a)× T a

(m)Ψ − igfabcΛbAc
µ × T a

(m)Ψ

〈〈 relabeling indices 〉〉

= iΛaT a
(m) × ∂µΨ − gAc

µT
c
(m) × ΛaT a

(m)Ψ − igf bacΛaAc
µ × T b

(m)Ψ

= iΛa ×
(

T a
(m)∂µΨ + igAc

µ ×
(

T c
(m)T

a
(m)Ψ + if bacT b

(m)Ψ
))

(116)

where

if bacT b
(m) = ifacbT b

(m) =
[

T a
(m), T

c
(m)

]

=⇒ T c
(m)T

a
(m)Ψ + if bacT b

(m)Ψ = T a
(m)T

c
(m)Ψ,

(117)

hence

δDµΨ = iΛa ×
(

T a
(m)∂µΨ + igAc

µT
a
(m)T

c
(m)Ψ

)

= iΛaT a
(m) ×

(

∂µΨ + igAc
µT

c
(m)Ψ

)

= iΛaT a
(m) ×DµΨ,

(118)

quod erat demonstrandum.

To save time, I am not going to prove the covariance of Dµ under finite gauge transforms

u(x). Instead, let me simply summarize how such finite gauge transforms act on various
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fields. In general,

any finite u ∈ G is u = exp(iΛaT̂ a) for some finite Λa, (119)

and the representation of this finite group element in a multiplet type (m) is a finite matrix

R(m)(u) = exp
(

iΛaT a
(m)

)

. (120)

Consequently, under a finite gauge transform u(x) = exp(iΛa(x)T̂ a), the matter fields Ψα(x)

belonging to a multiplet (m) mix with each other — but only with the members of the same

multiplet — as

Ψα′(x) =
[

exp
(

iΛa(x)T a
(m)

)]α

β
Ψβ(x). (121)

As to the gauge fields, it is best to write their transformation laws in terms of the Lie-

algebra-valued connection Aµ(x) and curvature Fµν(x):

A′
µ(x) = i(∂µu(x))u

−1(x) + u(x)Aµ(x)u
−1(x), (122)

F ′
µν(x) = u(x)Fµν(x)u

−1(x). (123)

Consequently, for any representation (r) of the gauge symmetry group G

A′a
µ (x)T

a
(r) =

i

g
∂µ
(

R(r)(u(x))
)

× R−1
(r)

(u(x))

+ R(r)(u(x))× Ab
µ(x)T

b
(r) ×R−1

(r)
(u(x)), (124)

F ′a
µν(x)T

a
(r) = R(r)(u(x))× F b

µν(x)T
b
(r) × R−1

(r)
(u(x)), (125)

for the same A′a
µ (x) and F ′a

µν(x) for any representation (r). In components, eq. (122) becomes

rather unwieldy, but eq. (123) amounts to the tension fields F a
µν(x) forming an adjoint

multiplet of G, thus

F a′
µν(x) = Rab

adj(u(x))× F b
µν(x). (126)

Note: any simple Lie group has an adjoint representation where the generators T̂ a are
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represented by

[

T a
adj

]bc
= −ifabc; (127)

the commutation relations
[

T a
adj, T

b
adj

]

= ifabcT c
adj between these dim(G)× dim(G) matrices

follow from the Jacobi identity

∀a, b, c : [T̂ a, [T̂ b, T̂ c]] + [T̂ b, [T̂ c, T̂ a]] + [T̂ c, [T̂ a, T̂ b]] = 0 (128)

for the Lie algebra G. Proof: in terms of the structure constants fabc,

[T̂ a, [T̂ b, T̂ c]] = [T̂ a, if bceT̂ e] = if bce[T̂ a, T̂ e] = if bce × ifaed × T̂ d, (129)

so the Jacobi identity (128) amounts to

−f bcefaed × T̂ d − f caef bed × T̂ d − fabef ced × T̂ d = 0 (130)

and hence

f bcefaed + f caef bed + fabef ced = 0. (131)

Now let’s apply this identity to the adjoint representation’s generators (127):

[

T a
adj, T

b
adj

]cd
=
(

T a
adj

)ce(
T b
adj

)ed − (a ↔ b)

=
(

−iface
)(

−if bed
)

−
(

−if bce
)(

−ifaed
)

= +f caef bed + f bcefaed

〈〈 by eq. (131) 〉〉 = −fabef ced = ifabe ×
(

if ced = −if ecd
)

= ifabe ×
(

T e
adj

)cd
,

(132)

thus indeed

[

T a
adj, T

b
adj

]

= ifabeT e
adj. (133)

Fields Φa(x) in an adjoint multiplet transform under infinitesimal gauge symmetries as

δΦa(x) = −fabcΛb(x)Φc(x) (134)
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and the covariant derivatives Dµ act on them as

DµΦ
a(x) = ∂µΦ

a(x) − gfabcAb
µ(x)Φ

c(x). (135)

Or in matrix form — or rather Lie algebra form — Φ̂(x) = Φa(x)T̂ a,

δΦ̂(x) = i[Λ̂(x), Φ̂(x)], DµΦ̂ = ∂µΦ̂(x) + i[Aµ(x), Φ̂(x)]. (136)

The Lie algebra form also makes it easy to write down the finite gauge transform of an

adjoint multiplet,

Φ̂′(x) = u(x)Φ̂(x)u−1(x). (137)

In particular, the tension fields F a
µν(x) — which transform according to eq. (137) — form

an adjoint multiplet of the gauge symmetry.

Killing–Cartan classification

All the simple compact Lie algebra have been classified by Wilhelm Killing and Élie

Cartan back in 1888–94. In modern terminology (Eugene Dynkin, 1947), there 4 infinite

series An, Bn, Cn, and Dn, and 5 exceptional algebras G2, F4, E6, E7, and E8. The index

n here is the rank of the Lie algebra — the maximal number of independent generators that

commute with each other. The 4 infinite series — sometimes called the classical Lie algebras

correspond to the familiar unitary, orthogonal, or symplectic matrix groups. Specifically:

• The An algebras correspond to the special unitary groups, An = SU(n + 1), n =

1, 2, 3, . . ..

• The Bn algebras correspond to the real orthogonal groups in odd dimensions, Bn =

SO(2n+ 1), n = 1, 2, 3, . . ..

• The Cn algebra correspond to the unitary symplectic groups USp(2n), cf. Wikipedia

article on the subject. Briefly, the USp(2n) group comprises unitary 2n× 2n matrices

U which also preserve a given antisymmetric tensor Ωij ; in matrix notations,

Ω =

(

0n×n −1n×n

−1n×n 0n×n

)

, U⊤ΩU = Ω. (138)

• The Dn algebras correspond to the real orthogonal groups in even dimensions, Dn =

SO(2n), n = 2, 3, 4, . . ..
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◦ Alas, the 5 exceptional algebras G2, F4, E6, E7, and E8 do not correspond to any

classical matrix groups.

Combined Gauge Symmetries

A gauge symmetry group G does not have to be simple. It may also be a direct product

of several simple or abelian U(1) factors,

G = G1 ×G2 ×G3 × · · · , (139)

where each factor Gi comes with its own gauge fields — one for each generator of Gi — and

its own gauge coupling gi, thus

L =
∑

i

−1

2g2i
tr
(

FµνFµν
)

Gi
+ L[matter]. (140)

For example, the Standard Model has G = SU(3)×SU(2)×U(1); the SU(3) — which acts

on the quark’s colors — comes with 8 gluon fields Ga
µ which are responsible for the strong

interactions; while the 3 gauge fields Wa
µ of the SU(2) and 1 gauge field Bµ of the U(1) are

responsible for the weak and the electromagnetic interactions. The three factors of the gauge

group have rather different couplings,

LSM = − 1

2g23
tr
(

GµνGµν
)

− 1

2g22
tr
(

WµνWµν
)

− 1

4g21
BµνBµν + L[matter], (141)

for

4π

g23
≈ 9.23,

4π

g22
≈ 29.97,

4π

g21
≈ 97.76. (142)

(Renormalized MS couplings at energy scale E = mtop
quark = 173 GeV.)

The matter multiplets of product gauge groups (139) are products of multiplets of the

individual factors,

(m) = (m1)⊗ (m2)⊗ (m3)⊗ · · · , (m1) of G1, (m2) of G2, (m3) of G3, . . . . (143)

For the abelian factors of G (if any), all multiplets are singlets but they may have different

U(1) charges (which we need to specify). For example, the fermionic fields of the Standard

Model form 5 kinds of the SU(3)× SU(2)× U(1) multiplets:
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• The left-handed quarks form triplets of SU(3), doublets of SU(2) — (u, d), (c, s), and

(t, b), — and have U(1) hypercharge y = +1
6 . Consequently, each such multiplet has 6

members labeled by a color index j = 1, 2, 3 and an SU(2) flavor index α = 1, 2, and

the covariant derivatives act on the member fields Ψj,α
Q as

DµΨ
j,α
Q = ∂µΨ

j,α
Q +

ig3
2

Ga
µ(λ

a)jkΨ
k,α
Q +

ig2
2

W a
µ (τ

a)αβΨ
j,β
Q +

ig1
6

BµΨ
j,α
Q

for j, k = 1, 2, 3, α, β = 1, 2.
(144)

• The right-handed quarks of flavors u, c, and t also form SU(3) triplets, but they are

singlets of SU(2) and have hypercharge y = +2
3 . Each such multiplet has 3 members

Ψj
U distinguished by their colors j = 1, 2, 3, and their covariant derivatives are

DµΨ
j
U = ∂µΨ

j
U +

ig3
2

Ga
µ(λ

a)jkΨ
k
U +

2ig1
3

BµΨ
j
Q . (145)

• The right-handed quarks of flavors d, s, and b are also SU(3) triplets and SU(2)

singlets, but they have a different hypercharge y = −1
3 . Each such multiplet has

3 members Ψj
D similar to the Ψj

U , but their covariant derivatives have a different

coupling of the U(1) gauge field Bµ, namely

DµΨ
j
D = ∂µΨ

j
D +

ig3
2

Ga
µ(λ

a)jkΨ
k
D − ig1

3
BµΨ

j
D . (146)

• The left-handed leptons are SU(3) singlets but SU(2) doublets (νe, e
−), (νµ, µ

−), and

(ντ , τ
−) of hypercharge y = −1

2 . Each of these multiplets has 2 members Ψα
L distin-

guished by their flavors α = 1, 2, but there are no color indices so they do not couple

to the SU(3) gauge fields. The covariant derivatives of the LH lepton fields are

DµΨ
α
L = ∂µΨ

α
L +

ig2
2

W a
µ (τ

a)αβΨ
β
L − ig1

2
BµΨ

β
L . (147)

• The right-handed charged leptons e−, µ−, and τ− are singlets of both SU(3) and SU(2)

— hence only one member ΨE per multiplet, without any color or flavor indices, —
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and have hypercharge y = −1. The covariant derivatives of the RH charged lepton

fields are

DµΨE = ∂µΨE − ig1BµΨE . (148)

◦ Finally, the right-handed neutrinos. Presently, we do not know where these fields

exist at all; but if they do exist, they do not couple to any of the Standard Model’s

gauge fields. Thus, they are singlets of both SU(3) and SU(2) and also have zero

hypercharges, so their covariant derivatives are simply

DµΨN = ∂µΨN + 0. (149)
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