
PHY–396 K. Problem set #3. Due September 20, 2022.

1. The ordinary quantum mechanics of a single relativistic particle — or any fixed number

of relativistic particles — violates the relativistic causality by allowing particles to move

faster than light. In this problem, we shall see how this works for the simplest case of a

single free relativistic spinless particle with the Hamiltonian

Ĥ = +

√
m2 + P̂2 (1)

(in the c = h̄ = 1 units). By general rules of quantum mechanics, the amplitude U(x→ y)

for this particle to propagate from point x at time x0 to point y at time y0 obtains from

the Hamiltonian (1) as

U(x→ y) =
〈
y, y0|x, x0

〉Heisenberg

picture
= 〈y| exp

(
−i(y0 − x0)Ĥ

)
|x〉Schroedingerpicture . (2)

(a) Use momentum basis for the Hamiltonian (1) to evaluate the coordinate-basis evolution

kernel (2) as

U(x→ y) =

∫
d3k

(2π)3
exp
(
ik · (y − x)− iω(k)× (y0 − x0)

)
(3)

for ω(k)
def
= +

√
m2 + k2 , (4)

then reduce the 3D momentum integral to the one-dimensional integral

U(x→ y) =
−i

4π2 r

+∞∫
−∞

dk k exp
(
irk − itω(k)

)
(5)

where r = |y − x| and t = y0 − x0.

We are particularly interested in the asymptotic behavior of the integral (5) in the limit of

r → ∞, t → ∞, fixed t/r ratio. The best method for obtaining the asymptotic behavior

of such integrals — or more general integrals of the form∫
dx f(x)× exp

(
−Ag(x)

)
, A → ∞ (6)

is the saddle-point method (AKA the mountain-pass method).
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(b) If you are not familiar with the saddle-point method, read my notes on it.

Those notes were originally written for a QM class, so they include the Airy function

example and the relation of the Airy functions to the WKB approximation. You do

not need the WKB or the Airy functions for this homework, just the saddle-point

method itself, so focus on the first 6 pages of my notes, the rest is optional.

(c) Now use the saddle point method to evaluate the integral (5) in the limit of r → ∞,

t→∞, while the ratio r/t stays fixed. Specifically, let (r/t) < 1 so we stay inside the

future light cone.

Show that in this limit, the evolution kernel (5) becomes

U(x→ y) ≈
(
−iM
2π

)3/2

× t

(t2 − r2)5/4
× exp(−iM

√
t2 − r2). (7)

(d) Finally, take a similar limit but go outside the light cone, thus fixed (r/t) > 1 while

r, t→ +∞. Show that in this limit, the kernel becomes

U(x→ y) ≈ iM3/2

(2π)3/2
× t

(r2 − t2)5/4
× exp(−M

√
r2 − t2). (8)

Hint: for r > t the saddle point is at complex k.

Eq. (8) shows that the propagation amplitude U(x→ y) diminishes exponentially outside

the light cone, but it does not vanish! Thus, given a particle localized at point x at the time

x0, at a later time y0 = x0 + t the wave function is mostly limited to the future light cone

r < t, but there is an exponential tail outside the light cone. In other words, the probability

of superluminal motion is exponentially small but non-zero.

Obviously, such superluminal propagation cannot be allowed in a consistently relativistic

theory. And that’s why relativistic quantum mechanics of a single particle is inconsistent.

Likewise, relativistic quantum mechanics of any fixed number of particles does not work,

except as an approximation.

In the quantum field theory, this paradox is resolved by allowing for creation and annihi-

lation of particles. Quantum field operators acting at points x and y outside each others’
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future lightcones can either create a particle at x and then annihilate it at y, or else anni-

hilate it at y and then create it at x, and we saw in class (cf. my notes) that the two effects

precisely cancel each other. Altogether, there is no net propagation outside the light cone,

and that’s how the relativistic QFT is perfectly causal while the relativistic QM is not.

2. Now let’s go back to the massive vector field Âµ(x) from the previous homework (set#2,

problems 2–5). In that homework you (should have) expanded the free vector field into

creation and annihilation operators multiplied by the plane-waves according to

Âµ(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikx × fµk,λ × âk,λ + e+ikx × f∗µk,λ × â

†
k,λ

)k0=+ωk

. (9)

The λ here labels the independent polarizations of a vector particle (for example, the

helicities λ = −1, 0,+1), while fµk,λ are the polarization vectors obeying kµf
µ(k, λ) = 0.

Specifically, in the helicity basis

for λ = ±1 : f0k,λ = 0, fk,λ = eλ(k),

for λ = 0 : f0k,λ =
|k|
m
, fk,λ =

ωk
m

k

|k|
.

(10)

In this problem, we are going to calculate the Feynman propagator for the massive vector

field (9).

(a) First, a lemma about the polarization 4-vectors (10). Show that these 4-vectors obtain

obtain by Lorentz boosting of the purely-spatial vectors (0, eλ(k)) into the frame of

the wave moving with the velocity v = k/ωk. Also, verify that the fµk,λ are normalized

to

gµνf
µ
k,λf

∗ν
k,λ′ = −δλ,λ′ . (11)

(b) Next, another lemma: show that

∑
λ

fµk,λf
∗ν
k,λ = −gµν +

kµkν

m2
. (12)

(c) Now use these lemmas to calculate the “vacuum sandwich” of two vector fields (9) and
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show that

〈0| Âµ(x)Âν(y) |0〉 =

∫
d3k

(2π)3
1

2ωk

[(
−gµν +

kµkν

m2

)
e−ik(x−y)

]
k0=+ωk

=

(
−gµν − ∂µ∂ν

m2

)
D(x− y)

(13)

where

D(x− y)
def
=

∫
d3k

(2π)3
1

2ωk

[
e−ik(x−y)

]k0=+ωk

. (14)

Please note: no time ordering in the “vacuum sandwich” (13).

(d) Next, consider a free scalar field (of the same mass m as the vector field) and its

Feynman propagator Gscalar
F (x− y). Show that

(
−gµν − ∂µ∂ν

m2

)
Gscalar
F (x−y) = 〈0|TÂµ(x)Âν(y) |0〉 +

i

m2
δµ0δν0δ(4)(x−y). (15)

To avoid the δ–function singularity in formulae like (15), the time-ordered product of the

vector fields (or rather, just of their Â0 components) is modified
?

according to

T∗Âµ(x)Âν(y) = TÂµ(x)Âν(y) +
i

m2
δµ0δν0δ(4)(x− y). (16)

Consequently, the Feynman propagator for the massive vector field is defined using the

modified time-ordered product of the two fields,

GµνF (x− y)
def
= 〈0|T∗Âµ(x)Âν(y) |0〉 (17)

(e) Show that this propagator obtains as

GµνF (x− y) =

∫
d4k

(2π)4

(
−gµν +

kµkν

m2

)
× ie−ik(x−y)

k2 −m2 + i0
. (18)

? See Quantum Field Theory by Claude Itzykson and Jean–Bernard Zuber.
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The classical action for the free vector field can be written as

S = 1
2

∫
d4xAµ(x)DµνAν(x) (19)

where Dµν is a differential operator

Dµν def
= (∂2 +m2)gµν − ∂µ∂ν . (20)

(f) Check that the action (19) is correct, then show that the Feynman propagator (18) is

a Green’s function of the operator (20),

Dµνx GFνλ(x− y) = +iδµλδ
(4)(x− y). (21)

3. Finally, a reading assignment. To help you understand the relations between the continuous

symmetries, their generators, the multiplets, and the representations of the generators and

of the finite symmetries, read about the rotational symmetry and its generators in chapter 3

of the J. J. Sakurai’s book Modern Quantum Mechanics.
†

Please focus on sections 1, 2,

3, second half of section 5 (representations of the rotation operators), and section 10; the

other sections 4, 6, 7, 8, and 9 are not relevant to the present class material.

PS: If you have already read the Sakurai’s book before but it has been a while, please read

it again.

† The UT Math–Physics–Astronomy library has several hard copies but no electronic copies of the book.
However, you can find several pirate scans of the book (in PDF format) all over the web; Google them up
if you cannot find a legitimate copy.
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