
PHY–396 K. Problem set #4. Due September 27, 2022.

The first two problems (1 and 2) of this homework set are about the SO(N) symmetry of

the quantum theory of N scalar fields. The other two problems (3 and 4) are about the

stress-energy tensor of the electromagnetic fields.

1. Consider N interacting real scalar fields Φ1, . . . ,ΦN with the O(N) symmetric Lagrangian

L =
1

2

N∑
a=1

(
∂µΦa

)2 − m2

2

N∑
a=1

Φ2
a −

λ

24

(
N∑
a=1

Φ2
a

)2

. (1)

By the Noether theorem, the continuous SO(N) subgroup of the O(N) symmetry gives

rise to 1
2N(N − 1) conserved currents

Jµab(x) = −Jµba(x) = Φa(x) ∂µΦb(x)− Φb(x) ∂µΦa(x). (2)

In the quantum field theory, these currents become operators

Ĵab(x, t) = −Ĵba(x, t) = −Φ̂a(x, t)∇Φ̂b(x, t) + Φ̂b(x, t)∇Φ̂a(x, t),

Ĵ0
ab(x, t) = −Ĵ0

ba(x, t) = Φ̂a(x, t)Π̂b(x, t) − Φ̂b(x, t)Π̂a(x, t).
(3)

This problem is about the net charge operators

Q̂ab(t) = −Q̂ba(t) =

∫
d3x Ĵ0

ab(x, t) =

∫
d3x

(
Φ̂a(x, t)Π̂b(x, t) − Φ̂b(x, t)Π̂a(x, t)

)
. (4)

(a) Write down the equal-time commutation relations for the quantum Φ̂a and Π̂a fields.

Also, write down the Hamiltonian operator for the interacting fields.

(b) Show that [
Q̂ab(t), Φ̂c(x, same t)

]
= −iδbcΦ̂a(x, t) + iδacΦ̂b(x, t),[

Q̂ab(t), Π̂c(x, same t)
]

= −iδbcΠ̂a(x, t) + iδacΠ̂b(x, t),
(5)

(c) Show that the all the Q̂ab commute with the Hamiltonian operator Ĥ. In the Heisen-

berg picture, this makes all the charge operators Q̂ab time independent.
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(d) Verify that the Q̂ab obey commutation relations of the SO(N) generators,

[
Q̂ab, Q̂cd

]
= −iδ[c[bQ̂a]d] ≡ −iδbcQ̂ad + iδacQ̂bd + iδbdQ̂ac − iδadQ̂bc . (6)

2. Continuing the previous problem, let’s turn off the interactions (i.e., take λ = 0) and focus

on the free fields.

(a) Expand al the fields into linear combinations of the creation and annihilation operators

â†p,a and âp,a (a = 1, . . . , N), then show that in terms of these operators the charges (4)

become

Q̂ab =

∫
d3p

(2π)32Ep

(
−iâ†p,aâp,b + iâ†p,bâp,a

)
. (7)

For N = 2, the SO(2) symmetry becomes the U(1) phase symmetry one complex field

Φ = (Φ1 + iΦ2)/
√

2 and its conjugate Φ∗ = (Φ1 − iΦ2)/
√

2,

Φ(x) → e−iθΦ(x), Φ∗(x) → e+iθΦ∗(x). (8)

In the Fock space, the corresponding quantum fields Φ̂(x) and Φ̂†(x) give rise to particles

and anti-particles of opposite charges; the creation and annihilation operators for such

particles and antiparticles are

âp =
âp,1 + iâp,2√

2
are particle annihilation operators,

b̂p =
âp,1 − iâp,2√

2
are antiparticle annihilation operators,

â†p =
â†p,1 − iâ

†
p,2√

2
are particle creation operators,

b̂†p =
â†p,1 + iâ†p,2√

2
are antiparticle creation operators.

(9)

(b) Show that in terms of the operators (9),

Q̂21 = −Q̂12 = N̂particles − N̂antiparticles =

∫
d3p

(2π)32Ep

(
â†pâp − b̂†pb̂p

)
. (10)
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(c) In terms of Φ̂ and Φ̂†, the commutation relations (5) become

[Q̂21, Φ̂(x)] = −Φ̂(x), [Q̂21, Φ̂
†(x)] = +Φ̂†(x). (11)

Verify these commutators, then use the Hadamard Lemma

eÂB̂e−Â =
∞∑
n=0

1

n!
[Â, . . . , [Â, B̂] · · ·]n times

= B + [Â, B̂] + 1
2 [Â, [Â, B̂]] + 1

6 [Â, [Â, [Â, B̂]]] + · · ·

(12)

to show that the charge Q̂21 generates the phase symmetry (8) according to

exp(+iθQ̂21)Φ̂(x) exp(−iθQ̂21) = e−iθΦ̂(x),

exp(+iθQ̂21)Φ̂
†(x) exp(−iθQ̂21) = e+iθΦ̂†(x).

(13)

Now let’s go back to N > 2 and show that the charges Q̂ab generate the SO(N) symmetry of

the quantum fields. Any SO(N) rotation matrix R can be written as a matrix exponential

of an antisymmetric matrix, R = exp(A) for A> = −A. For this matrix A, let’s define a

unitary operator in the Fock space

Û = exp

(
− i

2

∑
ab

AabQ̂ab

)
. (14)

(d) Verify that this operator is indeed unitary for any real antisymmetric matrix A.

Hint: check and use the hermiticity of the generators Q̂ab.

(e) Show that Û implements the SO(N) rotation R in the scalar field space,

ÛΦ̂a(x)Û † =
∑
b

RabΦ̂b . (15)

Hint: use the commutation relations (5) and the Hadamard lemma (12).
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(f) Argue that [Q̂ab, Ĥ] = 0 and eq. (15) for the action of the Û symmetries on the quantum

fields together imply simlar transformation laws for the creation and the annihilation

operators

Û âp,aÛ
† =

∑
b

Rabâp,b and Û â†p,aÛ
† =

∑
b

Rabâ
†
p,b . (16)

(g) Finally, show that when Û acts on a multiparticle state, it rotates the species index of

each particle by R,

Û |n : (p1, a1), . . . , (pn, an)〉 =
∑

b1,...,bn

Ra1,b1 · · ·Ran,bn |n : (p1, b1), . . . , (pn, bn)〉 .

(17)

Note: for simplicity assume that all particles have different momenta, p1 6= p2, etc.,

then use part (j).

3. Now let’s turn our attention to the stress-energy tensor. According to the Noether theorem,

a translationally invariant system of classical fields φa(x) has a conserved stress-energy

tensor

TµνNoether =
∑
a

∂L
∂(∂µφa)

∂νφa − gµν L. (18)

For the scalar fields, real or complex, this Noether stress-energy tensor is properly sym-

metric, TµνNoether = T νµNoether. But for the vector, tensor, spinor, etc., fields, the Noether

stress-energy tensor (18) comes out asymmetric, so to make it properly symmetric one

adds a total-divergence term of the form

Tµν = TµνNoether + ∂λKλµ ν , (19)

where Kλµ ν ≡ −Kµλ ν is some 3–index Lorentz tensor antisymmetric in its first two indices.

To illustrate the problem, consider the free electromagnetic fields described by the La-

grangian

L(Aµ, ∂νAµ) = −1
4 FµνF

µν (20)

where Aµ is a real vector field and Fµν
def
= ∂µAν − ∂νAµ.
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(a) Write down TµνNoether for the free electromagnetic fields and show that it is neither

symmetric nor gauge invariant.

(b) The properly symmetric — and also gauge invariant — stress-energy tensor for the

free electromagnetism is

TµνEM = −FµλF νλ + 1
4 g

µν FκλF
κλ. (21)

Show that this expression indeed has form (19) for

Kλµ,ν = −F λµAν = −Kµλ,ν . (22)

(c) Write down the components of the stress-energy tensor (21) in non-relativistic nota-

tions and make sure you have the familiar electromagnetic energy density, momentum

density, and stress.

Next, consider the electromagnetic fields coupled to the electric current Jµ of some charged

“matter” fields. Because of this coupling, only the net energy-momentum of the whole field

system should be conserved, but not the separate PµEM and Pµmat. Consequently, we should

have

∂µT
µν
net = 0 for Tµνnet = TµνEM + Tµνmat (23)

but generally ∂µT
µν
EM 6= 0 and ∂µT

µν
mat 6= 0.

(d) Use Maxwell’s equations to show that

∂µT
µν
EM = −F νλJλ (24)

(in c = 1 units), and therefore any system of charged matter fields should have its

stress-energy tensor related to the electric current Jλ according to

∂µT
µν
mat = +F νλJλ. (25)

(e) Rewrite eq. (24) in non-relativistic notations and explain its physical meaning in terms

of the electromagnetic energy, momentum, work, and forces.
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4. Continuing problem 3, consider the EM fields coupled to a specific model of charged matter,

namely a complex scalar field Φ(x) 6= Φ∗(x) of electric charge q 6= 0. Altogether, the net

Lagrangian for the Aµ, Φ, and Φ∗ fields is

Lnet = DµΦ∗DµΦ − m2Φ∗Φ − 1
4F

µνFµν (26)

where

DµΦ = (∂µ + iqAµ)Φ and DµΦ∗ = (∂µ − iqAµ)Φ∗ (27)

are the covariant derivatives.

(a) Write down the equation of motion for all fields in a covariant from. Also, write down

the electric current

Jµ
def
= − ∂L

∂Aµ
(28)

in a manifestly gauge-invariant form and verify its conservation, ∂µJ
µ = 0 (as long as

the scalar fields satisfy their equations of motion).

(b) Write down the Noether stress-energy tensor for the whole system and show that

Tµνnet ≡ TµνEM + Tµνmat = TµνNoether + ∂λKλµν , (29)

where TµνEM is exactly as in eq. (21) for the free EM fields, the improvement tensor

Kλµ ν = −Kµλ ν is also exactly as in eq. (22), and

Tµνmat = DµΦ∗DνΦ + DνΦ∗DµΦ − gµν
(
DλΦ∗DλΦ − m2Φ∗Φ

)
. (30)

Note: although the improvement tensor Kλµ ν for the EM + matter system is the

same as for the free EM fields, in presence of an electric current Jµ its derivative

∂λKλµ ν contains an extra JµAν term. Pay attention to this term — it is important

for obtaining the gauge-invariant stress-energy tensor (30) for the scalar field.
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(c) Use the scalar fields’ equations of motion and the non-commutativity of covariant

derivatives

[Dµ, Dν ]Φ = iqFµνΦ, [Dµ, Dν ]Φ∗ = −iqFµνΦ∗ (31)

to show that

∂µT
µν
mat = +F νλJλ (32)

exactly as in eq. (25), and therefore the net stress-energy tensor (29) is conserved, cf.

problem 3(d).
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