PHY-396 K. Problem set #4. Due September 27, 2022.

The first two problems (1 and 2) of this homework set are about the SO(N) symmetry of
the quantum theory of N scalar fields. The other two problems (3 and 4) are about the

stress-energy tensor of the electromagnetic fields.

. Consider N interacting real scalar fields @1, ..., ®y with the O(N) symmetric Lagrangian
L , o2& Ny 2
£o=5) (0uPa) = 5> ¥ - ﬂ<2@3> - (1)
a=1 a=1 a=1
By the Noether theorem, the continuous SO(N) subgroup of the O(N) symmetry gives
rise to V(N — 1) conserved currents

szb(:v) = —Jl’fa(x) = Oy(z) HPp(x) — Pp(z) 0" Py (). (2)

In the quantum field theory, these currents become operators

jab(x7t) = _jba(xa t) = _qA)a<X7t)v(i)b(X7 t) + (i)b<xa t)vci)a(x7t)7 (3)
JO(x,t) = —J) (x,t) = Du(x, )IIy(x,t) — Dp(x, t)IIa(x,1).

This problem is about the net charge operators
Qult) = ~Qul®) = [dx4x.t) = [ax (Bl (. 0) — By Olx.t) . ()

(a) Write down the equal-time commutation relations for the quantum ®, and T, fields.

Also, write down the Hamiltonian operator for the interacting fields.

(b) Show that

~

[Qab(t>,<i>c(x,same t)} = i0pba(x,t) + i0acdy(x, 1),
(5)

~

[Qab(t),f[c(x, same t)} = —iébcﬂa(x,t) + iéacﬂb(x,t),

(c) Show that the all the Qq commute with the Hamiltonian operator H. In the Heisen-

berg picture, this makes all the charge operators Qab time independent.



(d) Verify that the Qap obey commutation relations of the SO(N) generators,

[Qaba@cd] = —i0pQag = —100Qad + 100cQps + 1004Qac — 0aQpc.  (6)

. Continuing the previous problem, let’s turn off the interactions (i.e., take A = 0) and focus

on the free fields.

(a) Expand al the fields into linear combinations of the creation and annihilation operators
&Ixa and apq (@ =1,..., N), then show that in terms of these operators the charges (4)

become
A d3p B A L
Qup = /m (—za;aap,b + ZaL’bap@) . (7)

For N = 2, the SO(2) symmetry becomes the U(1) phase symmetry one complex field
® = (®1 +iD3)/v/2 and its conjugate &* = (B — idy)/V/2,

d(zx) = e Po(z), d*(x) = e d*(x). (8)

In the Fock space, the corresponding quantum fields () and ®f(z) give rise to particles
and anti-particles of opposite charges; the creation and annihilation operators for such

particles and antiparticles are

~ dp 1 + Z'dp 2 . - .

ap = T are particle annihilation operators,

2 &p 1 Z.&p 2 . . 1y

b, = ———= are antiparticle annihilation operators,

. d;[) 1 id;r) 2 . .

ap = T are particle creation operators,
b +ial, o .

b, = ———== are antiparticle creation operators.

(b) Show that in terms of the operators (9),

) ) A . d3p e A
Q21 = —Q12 = Nparticles - Nantiparticles = /m (ai)ap B bLbP) . <10)
P



(¢) In terms of ® and ®f, the commutation relations (5) become
[Q21,8(2)] = —¥(2), [Qa1,®'(2)] = +&'(x). (11)

Verify these commutators, then use the Hadamard Lemma

PN A 1 - ~ A
AR —A E
e B6 — _A,...,A,B"'nimes
nzon![ | el (12)

to show that the charge le generates the phase symmetry (8) according to

exp(+i0Qa1) D (z) exp(—ifQa1) = e o (x), 13
exp(+i0Q21 ) DT (z) exp(—i0Q9) = TP (2).

Now let’s go back to N > 2 and show that the charges Qab generate the SO(N) symmetry of
the quantum fields. Any SO(N) rotation matrix R can be written as a matrix exponential
of an antisymmetric matrix, R = exp(A) for AT = —A. For this matrix A, let’s define a

unitary operator in the Fock space
N 7 A
U = exp (_5 ZbAaanb> : (14)
a

(d) Verify that this operator is indeed unitary for any real antisymmetric matrix A.

Hint: check and use the hermiticity of the generators Qab-

(e) Show that U implements the SO(N) rotation R in the scalar field space,

A~

U(i)a(fb)UT = ZRab(i)b- (15)
b

Hint: use the commutation relations (5) and the Hadamard lemma (12).



(f) Argue that [Qup, H] = 0 and eq. (15) for the action of the U/ symmetries on the quantum
fields together imply simlar transformation laws for the creation and the annihilation

operators

A

Uiy U' =" Ry, and Ual, U0 = > Raal . (16)
b b

(g) Finally, show that when U acts on a multiparticle state, it rotates the species index of

each particle by R,

(j|’l’LZ (plaal)y"'a(pnaan Z Ral,b1 an, n |TLI (p17b1)7"'7(pnabn)>-
bl7 7bn

(17)
Note: for simplicity assume that all particles have different momenta, p; # p2, etc.,

then use part (j).

3. Now let’s turn our attention to the stress-energy tensor. According to the Noether theorem,
a translationally invariant system of classical fields ¢4 (z) has a conserved stress-energy

tensor
TlGZether Za ;L(ba 8V¢a - g,uy L. (18)

For the scalar fields, real or complex, this Noether stress-energy tensor is properly sym-
metric, TNoether = Tﬁﬁether' But for the vector, tensor, spinor, etc., fields, the Noether
stress-energy tensor (18) comes out asymmetric, so to make it properly symmetric one

adds a total-divergence term of the form

— 124 A
TH = T ether T KM, (19)
where MY = —KCHAY i some 3-index Lorentz tensor antisymmetric in its first two indices.

To illustrate the problem, consider the free electromagnetic fields described by the La-

grangian
L(A,00A,) = —iFWF’“W (20)

where A, is a real vector field and F},, def oAy — O A,.



(a) Write down TY .., for the free electromagnetic fields and show that it is neither

symmetric nor gauge invariant.

(b) The properly symmetric — and also gauge invariant — stress-energy tensor for the

free electromagnetism is
Ty = —FMFS + Lot Form, (21)
Show that this expression indeed has form (19) for

AT Ty T (22)

(c) Write down the components of the stress-energy tensor (21) in non-relativistic nota-
tions and make sure you have the familiar electromagnetic energy density, momentum

density, and stress.

Next, consider the electromagnetic fields coupled to the electric current J# of some charged
“matter” fields. Because of this coupling, only the net energy-momentum of the whole field

system should be conserved, but not the separate Plfth and P” . Consequently, we should

mat:
have
OuThey = 0 for Tyt = Ty + Tt (23)

but generally 9, Ty, # 0 and 9, T, # 0.

mat

(d) Use Maxwell’s equations to show that
0T, = —F") (24)

(in ¢ = 1 units), and therefore any system of charged matter fields should have its

stress-energy tensor related to the electric current Jy according to

T = FF . (25)

mat

(e) Rewrite eq. (24) in non-relativistic notations and explain its physical meaning in terms

of the electromagnetic energy, momentum, work, and forces.



4. Continuing problem 3, consider the EM fields coupled to a specific model of charged matter,
namely a complex scalar field ®(x) # ®*(x) of electric charge ¢ # 0. Altogether, the net
Lagrangian for the A#, ®, and ®* fields is

Lyet = DFO*D,® — m?®*® — LFWF,, (26)

where

D,® = (9, + igA,)® and D,®* = (9, — igA,)d* (27)

are the covariant derivatives.

(a) Write down the equation of motion for all fields in a covariant from. Also, write down

the electric current

podet 0L )
J o, (28)

in a manifestly gauge-invariant form and verify its conservation, 9, J* = 0 (as long as

the scalar fields satisfy their equations of motion).

(b) Write down the Noether stress-energy tensor for the whole system and show that

_ A
Trlltelfc = T]éllll\//[ + Trl;ll;t = Tll\llcy)ether + 8)\’C lw’ (29)

where Thy; is exactly as in eq. (21) for the free EM fields, the improvement tensor

MY = —[CHAY s also exactly as in eq. (22), and

ThY = DF®*D"® + DV®*DHO — ¢M"(D)\P* D)o — m’op* ®). (30)
Note: although the improvement tensor K*¥ for the EM + matter system is the
same as for the free EM fields, in presence of an electric current J# its derivative
ONKMY contains an extra JHAY term. Pay attention to this term — it is important

for obtaining the gauge-invariant stress-energy tensor (30) for the scalar field.



(c) Use the scalar fields’ equations of motion and the non-commutativity of covariant

derivatives
D, D,|® = iqF,,P, D, D,|®* = —iqF,,®* (31)
to show that
OuThy = +F") (32)

exactly as in eq. (25), and therefore the net stress-energy tensor (29) is conserved, cf.

problem 3(d).



