The first two problems (1 and 2) of this homework set are about the $S O(N)$ symmetry of the quantum theory of N scalar fields. The other two problems (3 and 4) are about the stress-energy tensor of the electromagnetic fields.

1. Consider N interacting real scalar fields $\Phi_{1}, \ldots, \Phi_{N}$ with the $O(N)$ symmetric Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \sum_{a=1}^{N}\left(\partial_{\mu} \Phi_{a}\right)^{2}-\frac{m^{2}}{2} \sum_{a=1}^{N} \Phi_{a}^{2}-\frac{\lambda}{24}\left(\sum_{a=1}^{N} \Phi_{a}^{2}\right)^{2} . \tag{1}
\end{equation*}
$$

By the Noether theorem, the continuous $S O(N)$ subgroup of the $O(N)$ symmetry gives rise to $\frac{1}{2} N(N-1)$ conserved currents

$$
\begin{equation*}
J_{a b}^{\mu}(x)=-J_{b a}^{\mu}(x)=\Phi_{a}(x) \partial^{\mu} \Phi_{b}(x)-\Phi_{b}(x) \partial^{\mu} \Phi_{a}(x) . \tag{2}
\end{equation*}
$$

In the quantum field theory, these currents become operators

$$
\begin{align*}
& \hat{\mathbf{J}}_{a b}(\mathbf{x}, t)=-\hat{\mathbf{J}}_{b a}(\mathbf{x}, t)=-\hat{\Phi}_{a}(\mathbf{x}, t) \nabla \hat{\Phi}_{b}(\mathbf{x}, t)+\hat{\Phi}_{b}(\mathbf{x}, t) \nabla \hat{\Phi}_{a}(\mathbf{x}, t) \\
& \hat{J}_{a b}^{0}(\mathbf{x}, t)=-\hat{J}_{b a}^{0}(\mathbf{x}, t)=\hat{\Phi}_{a}(\mathbf{x}, t) \hat{\Pi}_{b}(\mathbf{x}, t)-\hat{\Phi}_{b}(\mathbf{x}, t) \hat{\Pi}_{a}(\mathbf{x}, t) \tag{3}
\end{align*}
$$

This problem is about the net charge operators

$$
\begin{equation*}
\hat{Q}_{a b}(t)=-\hat{Q}_{b a}(t)=\int d^{3} \mathbf{x} \hat{J}_{a b}^{0}(\mathbf{x}, t)=\int d^{3} \mathbf{x}\left(\hat{\Phi}_{a}(\mathbf{x}, t) \hat{\Pi}_{b}(\mathbf{x}, t)-\hat{\Phi}_{b}(\mathbf{x}, t) \hat{\Pi}_{a}(\mathbf{x}, t)\right) . \tag{4}
\end{equation*}
$$

(a) Write down the equal-time commutation relations for the quantum $\hat{\Phi}_{a}$ and $\hat{\Pi}_{a}$ fields. Also, write down the Hamiltonian operator for the interacting fields.
(b) Show that

$$
\begin{align*}
& {\left[\hat{Q}_{a b}(t), \hat{\Phi}_{c}(\mathbf{x}, \text { same } t)\right]=-i \delta_{b c} \hat{\Phi}_{a}(\mathbf{x}, t)+i \delta_{a c} \hat{\Phi}_{b}(\mathbf{x}, t)} \tag{5}\\
& {\left[\hat{Q}_{a b}(t), \hat{\Pi}_{c}(\mathbf{x}, \text { same } t)\right]=-i \delta_{b c} \hat{\Pi}_{a}(\mathbf{x}, t)+i \delta_{a c} \hat{\Pi}_{b}(\mathbf{x}, t)}
\end{align*}
$$

(c) Show that the all the $\hat{Q}_{a b}$ commute with the Hamiltonian operator \hat{H}. In the Heisenberg picture, this makes all the charge operators $\hat{Q}_{a b}$ time independent.
(d) Verify that the $\hat{Q}_{a b}$ obey commutation relations of the $S O(N)$ generators,

$$
\begin{equation*}
\left[\hat{Q}_{a b}, \hat{Q}_{c d}\right]=-i \delta_{[c[b} \hat{Q}_{a] d]} \equiv-i \delta_{b c} \hat{Q}_{a d}+i \delta_{a c} \hat{Q}_{b d}+i \delta_{b d} \hat{Q}_{a c}-i \delta_{a d} \hat{Q}_{b c} \tag{6}
\end{equation*}
$$

2. Continuing the previous problem, let's turn off the interactions (i.e., take $\lambda=0$) and focus on the free fields.
(a) Expand al the fields into linear combinations of the creation and annihilation operators $\hat{a}_{\mathbf{p}, a}^{\dagger}$ and $\hat{a}_{\mathbf{p}, a}(a=1, \ldots, N)$, then show that in terms of these operators the charges (4) become

$$
\begin{equation*}
\hat{Q}_{a b}=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}}\left(-i \hat{a}_{\mathbf{p}, a}^{\dagger} \hat{a}_{\mathbf{p}, b}+i \hat{a}_{\mathbf{p}, b}^{\dagger} \hat{a}_{\mathbf{p}, a}\right) . \tag{7}
\end{equation*}
$$

For $N=2$, the $S O(2)$ symmetry becomes the $U(1)$ phase symmetry one complex field $\Phi=\left(\Phi_{1}+i \Phi_{2}\right) / \sqrt{2}$ and its conjugate $\Phi^{*}=\left(\Phi_{1}-i \Phi_{2}\right) / \sqrt{2}$,

$$
\begin{equation*}
\Phi(x) \rightarrow e^{-i \theta} \Phi(x), \quad \Phi^{*}(x) \rightarrow e^{+i \theta} \Phi^{*}(x) \tag{8}
\end{equation*}
$$

In the Fock space, the corresponding quantum fields $\hat{\Phi}(x)$ and $\hat{\Phi}^{\dagger}(x)$ give rise to particles and anti-particles of opposite charges; the creation and annihilation operators for such particles and antiparticles are

$$
\begin{align*}
\hat{a}_{\mathbf{p}} & =\frac{\hat{a}_{\mathbf{p}, 1}+i \hat{a}_{\mathbf{p}, 2}}{\sqrt{2}} \text { are particle annihilation operators, } \\
\hat{b}_{\mathbf{p}} & =\frac{\hat{a}_{\mathbf{p}, 1}-i \hat{a}_{\mathbf{p}, 2}}{\sqrt{2}} \text { are antiparticle annihilation operators, } \\
\hat{a}_{\mathbf{p}}^{\dagger} & =\frac{\hat{a}_{\mathbf{p}, 1}^{\dagger}-i \hat{a}_{\mathbf{p}, 2}^{\dagger}}{\sqrt{2}} \text { are particle creation operators, } \tag{9}\\
\hat{b}_{\mathbf{p}}^{\dagger} & =\frac{\hat{a}_{\mathbf{p}, 1}^{\dagger}+i \hat{a}_{\mathbf{p}, 2}^{\dagger}}{\sqrt{2}} \text { are antiparticle creation operators. }
\end{align*}
$$

(b) Show that in terms of the operators (9),

$$
\begin{equation*}
\hat{Q}_{21}=-\hat{Q}_{12}=\hat{N}_{\text {particles }}-\hat{N}_{\text {antiparticles }}=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{\mathbf{p}}}\left(\hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}}-\hat{b}_{\mathbf{p}}^{\dagger} \hat{b}_{\mathbf{p}}\right) . \tag{10}
\end{equation*}
$$

(c) In terms of $\hat{\Phi}$ and $\hat{\Phi}^{\dagger}$, the commutation relations (5) become

$$
\begin{equation*}
\left[\hat{Q}_{21}, \hat{\Phi}(x)\right]=-\hat{\Phi}(x), \quad\left[\hat{Q}_{21}, \hat{\Phi}^{\dagger}(x)\right]=+\hat{\Phi}^{\dagger}(x) \tag{11}
\end{equation*}
$$

Verify these commutators, then use the Hadamard Lemma

$$
\begin{align*}
e^{\hat{A}} \hat{B} e^{-\hat{A}} & =\sum_{n=0}^{\infty} \frac{1}{n!}[\hat{A}, \ldots,[\hat{A}, \hat{B}] \cdots]_{n \text { times }} \tag{12}\\
& =B+[\hat{A}, \hat{B}]+\frac{1}{2}[\hat{A},[\hat{A}, \hat{B}]]+\frac{1}{6}[\hat{A},[\hat{A},[\hat{A}, \hat{B}]]]+\cdots
\end{align*}
$$

to show that the charge \hat{Q}_{21} generates the phase symmetry (8) according to

$$
\begin{align*}
\exp \left(+i \theta \hat{Q}_{21}\right) \hat{\Phi}(x) \exp \left(-i \theta \hat{Q}_{21}\right) & =e^{-i \theta} \hat{\Phi}(x) \tag{13}\\
\exp \left(+i \theta \hat{Q}_{21}\right) \hat{\Phi}^{\dagger}(x) \exp \left(-i \theta \hat{Q}_{21}\right) & =e^{+i \theta} \hat{\Phi}^{\dagger}(x)
\end{align*}
$$

Now let's go back to $N>2$ and show that the charges $\hat{Q}_{a b}$ generate the $S O(N)$ symmetry of the quantum fields. Any $S O(N)$ rotation matrix R can be written as a matrix exponential of an antisymmetric matrix, $R=\exp (A)$ for $A^{\top}=-A$. For this matrix A, let's define a unitary operator in the Fock space

$$
\begin{equation*}
\hat{U}=\exp \left(-\frac{i}{2} \sum_{a b} A_{a b} \hat{Q}_{a b}\right) . \tag{14}
\end{equation*}
$$

(d) Verify that this operator is indeed unitary for any real antisymmetric matrix A.

Hint: check and use the hermiticity of the generators $\hat{Q}_{a b}$.
(e) Show that \hat{U} implements the $S O(N)$ rotation R in the scalar field space,

$$
\begin{equation*}
\hat{U} \hat{\Phi}_{a}(x) \hat{U}^{\dagger}=\sum_{b} R_{a b} \hat{\Phi}_{b} \tag{15}
\end{equation*}
$$

Hint: use the commutation relations (5) and the Hadamard lemma (12).
(f) Argue that $\left[\hat{Q}_{a b}, \hat{H}\right]=0$ and eq. (15) for the action of the \hat{U} symmetries on the quantum fields together imply simlar transformation laws for the creation and the annihilation operators

$$
\begin{equation*}
\hat{U} \hat{a}_{\mathbf{p}, a} \hat{U}^{\dagger}=\sum_{b} R_{a b} \hat{a}_{\mathbf{p}, b} \quad \text { and } \quad \hat{U} \hat{a}_{\mathbf{p}, a}^{\dagger} \hat{U}^{\dagger}=\sum_{b} R_{a b} \hat{a}_{\mathbf{p}, b}^{\dagger} . \tag{16}
\end{equation*}
$$

(g) Finally, show that when \hat{U} acts on a multiparticle state, it rotates the species index of each particle by R,

$$
\begin{equation*}
\hat{U}\left|n:\left(\mathbf{p}_{1}, a_{1}\right), \ldots,\left(\mathbf{p}_{n}, a_{n}\right)\right\rangle=\sum_{b_{1}, \ldots, b_{n}} R_{a_{1}, b_{1}} \cdots R_{a_{n}, b_{n}}\left|n:\left(\mathbf{p}_{1}, b_{1}\right), \ldots,\left(\mathbf{p}_{n}, b_{n}\right)\right\rangle . \tag{17}
\end{equation*}
$$

Note: for simplicity assume that all particles have different momenta, $\mathbf{p}_{1} \neq \mathbf{p}_{2}$, etc., then use part (j).
3. Now let's turn our attention to the stress-energy tensor. According to the Noether theorem, a translationally invariant system of classical fields $\phi_{a}(x)$ has a conserved stress-energy tensor

$$
\begin{equation*}
T_{\text {Noether }}^{\mu \nu}=\sum_{a} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \partial^{\nu} \phi_{a}-g^{\mu \nu} \mathcal{L} . \tag{18}
\end{equation*}
$$

For the scalar fields, real or complex, this Noether stress-energy tensor is properly symmetric, $T_{\text {Noether }}^{\mu \nu}=T_{\text {Noether }}^{\nu \mu}$. But for the vector, tensor, spinor, etc., fields, the Noether stress-energy tensor (18) comes out asymmetric, so to make it properly symmetric one adds a total-divergence term of the form

$$
\begin{equation*}
T^{\mu \nu}=T_{\text {Noether }}^{\mu \nu}+\partial_{\lambda} \mathcal{K}^{\lambda \mu \nu} \tag{19}
\end{equation*}
$$

where $\mathcal{K}^{\lambda \mu \nu} \equiv-\mathcal{K}^{\mu \lambda \nu}$ is some 3-index Lorentz tensor antisymmetric in its first two indices. To illustrate the problem, consider the free electromagnetic fields described by the Lagrangian

$$
\begin{equation*}
\mathcal{L}\left(A_{\mu}, \partial_{\nu} A_{\mu}\right)=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \tag{20}
\end{equation*}
$$

where A_{μ} is a real vector field and $F_{\mu \nu} \stackrel{\text { def }}{=} \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.
(a) Write down $T_{\text {Noether }}^{\mu \nu}$ for the free electromagnetic fields and show that it is neither symmetric nor gauge invariant.
(b) The properly symmetric - and also gauge invariant - stress-energy tensor for the free electromagnetism is

$$
\begin{equation*}
T_{\mathrm{EM}}^{\mu \nu}=-F^{\mu \lambda} F_{\lambda}^{\nu}+\frac{1}{4} g^{\mu \nu} F_{\kappa \lambda} F^{\kappa \lambda} . \tag{21}
\end{equation*}
$$

Show that this expression indeed has form (19) for

$$
\begin{equation*}
\mathcal{K}^{\lambda \mu, \nu}=-F^{\lambda \mu} A^{\nu}=-\mathcal{K}^{\mu \lambda, \nu} \tag{22}
\end{equation*}
$$

(c) Write down the components of the stress-energy tensor (21) in non-relativistic notations and make sure you have the familiar electromagnetic energy density, momentum density, and stress.

Next, consider the electromagnetic fields coupled to the electric current J^{μ} of some charged "matter" fields. Because of this coupling, only the net energy-momentum of the whole field system should be conserved, but not the separate $P_{\text {EM }}^{\mu}$ and $P_{\text {mat }}^{\mu}$. Consequently, we should have

$$
\begin{equation*}
\partial_{\mu} T_{\text {net }}^{\mu \nu}=0 \quad \text { for } \quad T_{\text {net }}^{\mu \nu}=T_{\mathrm{EM}}^{\mu \nu}+T_{\text {mat }}^{\mu \nu} \tag{23}
\end{equation*}
$$

but generally $\partial_{\mu} T_{\mathrm{EM}}^{\mu \nu} \neq 0$ and $\partial_{\mu} T_{\text {mat }}^{\mu \nu} \neq 0$.
(d) Use Maxwell's equations to show that

$$
\begin{equation*}
\partial_{\mu} T_{\mathrm{EM}}^{\mu \nu}=-F^{\nu \lambda} J_{\lambda} \tag{24}
\end{equation*}
$$

(in $c=1$ units), and therefore any system of charged matter fields should have its stress-energy tensor related to the electric current J_{λ} according to

$$
\begin{equation*}
\partial_{\mu} T_{\mathrm{mat}}^{\mu \nu}=+F^{\nu \lambda} J_{\lambda} \tag{25}
\end{equation*}
$$

(e) Rewrite eq. (24) in non-relativistic notations and explain its physical meaning in terms of the electromagnetic energy, momentum, work, and forces.
4. Continuing problem 3, consider the EM fields coupled to a specific model of charged matter, namely a complex scalar field $\Phi(x) \neq \Phi^{*}(x)$ of electric charge $q \neq 0$. Altogether, the net Lagrangian for the A^{μ}, Φ, and Φ^{*} fields is

$$
\begin{equation*}
\mathcal{L}_{\text {net }}=D^{\mu} \Phi^{*} D_{\mu} \Phi-m^{2} \Phi^{*} \Phi-\frac{1}{4} F^{\mu \nu} F_{\mu \nu} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{\mu} \Phi=\left(\partial_{\mu}+i q A_{\mu}\right) \Phi \quad \text { and } \quad D_{\mu} \Phi^{*}=\left(\partial_{\mu}-i q A_{\mu}\right) \Phi^{*} \tag{27}
\end{equation*}
$$

are the covariant derivatives.
(a) Write down the equation of motion for all fields in a covariant from. Also, write down the electric current

$$
\begin{equation*}
J^{\mu} \stackrel{\text { def }}{=}-\frac{\partial \mathcal{L}}{\partial A_{\mu}} \tag{28}
\end{equation*}
$$

in a manifestly gauge-invariant form and verify its conservation, $\partial_{\mu} J^{\mu}=0$ (as long as the scalar fields satisfy their equations of motion).
(b) Write down the Noether stress-energy tensor for the whole system and show that

$$
\begin{equation*}
T_{\mathrm{net}}^{\mu \nu} \equiv T_{\mathrm{EM}}^{\mu \nu}+T_{\mathrm{mat}}^{\mu \nu}=T_{\text {Noether }}^{\mu \nu}+\partial_{\lambda} \mathcal{K}^{\lambda \mu \nu} \tag{29}
\end{equation*}
$$

where $T_{\mathrm{EM}}^{\mu \nu}$ is exactly as in eq. (21) for the free EM fields, the improvement tensor $\mathcal{K}^{\lambda \mu \nu}=-\mathcal{K}^{\mu \lambda \nu}$ is also exactly as in eq. (22), and

$$
\begin{equation*}
T_{\mathrm{mat}}^{\mu \nu}=D^{\mu} \Phi^{*} D^{\nu} \Phi+D^{\nu} \Phi^{*} D^{\mu} \Phi-g^{\mu \nu}\left(D_{\lambda} \Phi^{*} D^{\lambda} \Phi-m^{2} \Phi^{*} \Phi\right) \tag{30}
\end{equation*}
$$

Note: although the improvement tensor $\mathcal{K}^{\lambda \mu \nu}$ for the EM + matter system is the same as for the free EM fields, in presence of an electric current J^{μ} its derivative $\partial_{\lambda} \mathcal{K}^{\lambda \mu \nu}$ contains an extra $J^{\mu} A^{\nu}$ term. Pay attention to this term - it is important for obtaining the gauge-invariant stress-energy tensor (30) for the scalar field.
(c) Use the scalar fields' equations of motion and the non-commutativity of covariant derivatives

$$
\begin{equation*}
\left[D_{\mu}, D_{\nu}\right] \Phi=i q F_{\mu \nu} \Phi, \quad\left[D_{\mu}, D_{\nu}\right] \Phi^{*}=-i q F_{\mu \nu} \Phi^{*} \tag{31}
\end{equation*}
$$

to show that

$$
\begin{equation*}
\partial_{\mu} T_{\mathrm{mat}}^{\mu \nu}=+F^{\nu \lambda} J_{\lambda} \tag{32}
\end{equation*}
$$

exactly as in eq. (25), and therefore the net stress-energy tensor (29) is conserved, cf. problem 3(d).

