This homework has 4 problems. Problems 1 and 2 are about the non-abelian gauge theories. Problems 3 and 4 are about the Lorentz symmetry and its generators. Altogether, it's a pretty large homework set, so start working early.

1. In class, I have focused on the fundamental multiplet of the local $S U(N)$ symmetry, i.e., a set of N fields (complex scalars or Dirac fermions) which transform as a complex N-vector,

$$
\begin{equation*}
\Psi^{\prime}(x)=U(x) \Psi(x) \quad \text { i.e. } \quad \Psi^{\prime i}(x)=\sum_{j} U_{j}^{i}(x) \Psi^{j}(x), \quad i, j=1,2, \ldots, N \tag{1}
\end{equation*}
$$

where $U(x)$ is an x-dependent unitary $N \times N$ matrix, $\operatorname{det} U(x) \equiv 1$. Now consider $N^{2}-1$ real fields $\Phi^{a}(x)$ forming an adjoint multiplet: In matrix form

$$
\begin{equation*}
\Phi(x)=\sum_{a} \Phi^{a}(x) \times \frac{\lambda^{a}}{2} \tag{2}
\end{equation*}
$$

is a traceless hermitian $N \times N$ matrix which transforms under the local $S U(N)$ symmetry as

$$
\begin{equation*}
\Phi^{\prime}(x)=U(x) \Phi(x) U^{\dagger}(x) \tag{3}
\end{equation*}
$$

Note that this transformation law preserves the $\Phi^{\dagger}=\Phi$ and the $\operatorname{tr}(\Phi)=0$ conditions. The covariant derivatives D_{μ} act on an adjoint multiplet according to

$$
\begin{equation*}
D_{\mu} \Phi(x)=\partial_{\mu} \Phi(x)+i\left[\mathcal{A}_{\mu}(x), \Phi(x)\right] \equiv \partial_{\mu} \Phi(x)+i \mathcal{A}_{\mu}(x) \Phi(x)-i \Phi(x) \mathcal{A}_{\mu}(x) \tag{4}
\end{equation*}
$$

or in components

$$
\begin{equation*}
D_{\mu} \Phi^{a}(x)=\partial_{\mu} \Phi_{a}(x)-f^{a b c} \mathcal{A}_{\mu}^{b}(x) \Phi^{c}(x) \tag{5}
\end{equation*}
$$

(a) Verify that these derivatives are indeed covariant under the finite gauge transforms (3).
(b) Verify the Leibniz rule for the covariant derivatives of matrix products. Let $\Phi(x)$ and $\Xi(x)$ be two adjoint multiplets while $\Psi(x)$ is a fundamental multiplet and $\Psi^{\dagger}(x)$ is its hermitian conjugate (row vector of Ψ_{i}^{*}). Show that

$$
\begin{align*}
D_{\mu}(\Phi \Xi) & =\left(D_{\mu} \Phi\right) \Xi+\Phi\left(D_{\mu} \Xi\right) \\
D_{\mu}(\Phi \Psi) & =\left(D_{\mu} \Phi\right) \Psi+\Phi\left(D_{\mu} \Psi\right) \tag{6}\\
D_{\mu}\left(\Psi^{\dagger} \Xi\right) & =\left(D_{\mu} \Psi^{\dagger}\right) \Xi+\Psi^{\dagger}\left(D_{\mu} \Xi\right)
\end{align*}
$$

(c) Show that for an adjoint multiplet $\Phi(x)$,

$$
\begin{equation*}
\left[D_{\mu}, D_{\nu}\right] \Phi(x)=i\left[\mathcal{F}_{\mu \nu}(x), \Phi(x)\right]=i g\left[F_{\mu \nu}(x), \Phi(x)\right] \tag{7}
\end{equation*}
$$

or in components $\left[D_{\mu}, D_{\nu}\right] \Phi^{a}(x)=-g f^{a b c} F_{\mu \nu}^{b}(x) \Phi^{c}(x)$.

- In my notations A_{μ} and $F_{\mu \nu}$ are the canonically normalized potential and tension fields, while $\mathcal{A}_{\mu}=g A_{\mu}$ is the connection in the covariant derivative and $\mathcal{F}_{\mu \nu}=$ $g F_{\mu \nu}$ is the curvature of that connection.

In class, I have argued (using covariant derivatives) that the tension fields $\mathcal{F}_{\mu \nu}(x)$ themselves transform according to eq. (3). In other words, the $\mathcal{F}_{\mu \nu}^{a}(x)$ form an adjoint multiplet of the $S U(N)$ symmetry group.
(d) Verify the $\mathcal{F}_{\mu \nu}^{\prime}(x)=U(x) \mathcal{F}_{\mu \nu}(x) U^{\dagger}(x)$ transformation law directly from the definition $\mathcal{F}_{\mu \nu} \stackrel{\text { def }}{=} \partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu}+i\left[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right]$ and the non-abelian gauge transform of the \mathcal{A}_{μ} fields.
(e) Verify the covariant differential identity for the non-abelian tension fields $\mathcal{F}_{\mu \nu}(x)$:

$$
\begin{equation*}
D_{\lambda} \mathcal{F}_{\mu \nu}+D_{\mu} \mathcal{F}_{\nu \lambda}+D_{\nu} \mathcal{F}_{\lambda \mu}=0 \tag{8}
\end{equation*}
$$

Note the covariant derivatives (4) in this equation.

Finally, consider the $S U(N)$ Yang-Mills theory - the non-abelian gauge theory that does not have any fields except $\mathcal{A}^{a}(x)$ and $\mathcal{F}^{a}(x)$; its Lagrangian is

$$
\begin{equation*}
\mathcal{L}_{\mathrm{YM}}=-\frac{1}{2 g^{2}} \operatorname{tr}\left(\mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}\right)=-\frac{1}{4} \sum_{a} F_{\mu \nu}^{a} F^{a \mu \nu} \tag{9}
\end{equation*}
$$

(f) Show that the Euler-Lagrange field equations for the Yang-Mills theory can be written in covariant form as $D_{\mu} \mathcal{F}^{\mu \nu}=0$.
Hint: first show that for an infinitesimal variation $\delta \mathcal{A}_{\mu}(x)$ of the non-abelian gauge fields, the tension fields vary according to $\delta \mathcal{F}_{\mu \nu}(x)=D_{\mu} \delta \mathcal{A}_{\nu}(x)-D_{\nu} \delta \mathcal{A}_{\mu}(x)$.
2. Continuing the previous problem, consider an $S U(N)$ gauge theory in which $N^{2}-1$ vector fields $A_{\mu}^{a}(x)$ interact with some "matter" fields $\phi_{\alpha}(x)$,

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2 g^{2}} \operatorname{tr}\left(\mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}\right)+\mathcal{L}_{\mathrm{mat}}\left(\phi, D_{\mu} \phi\right) \tag{10}
\end{equation*}
$$

For the moment, let me keep the matter fields completely generic - they can be scalars, or vectors, or spinors, or whatever, and form any kind of a multiplet of the local $S U(N)$ symmetry as long as such multiplet is complete and non-trivial. All we need to know right now is that there are well-defined covariant derivatives $D_{\mu} \phi$ that depend on the gauge fields A_{μ}^{a}, which give rise to the currents

$$
\begin{equation*}
J^{a \mu}=-\frac{\partial \mathcal{L}_{\mathrm{mat}}}{\partial A_{\mu}^{a}}=-\sum_{\phi} \frac{\partial \mathcal{L}_{\mathrm{mat}}}{\partial\left(D_{\mu} \phi\right)} \times i g \hat{T}^{a} \phi \tag{11}
\end{equation*}
$$

Collectively, these $N^{2}-1$ currents should form an adjoint multiplet of the local $S U(N)$ symmetry, meaning

$$
\begin{equation*}
J_{\mu}(x) \stackrel{\text { def }}{=} \sum_{a} J_{\mu}^{a}(x) \frac{\lambda^{a}}{2} \quad \text { transforms to } \quad J_{\mu}^{\prime}(x)=U(x) J_{\mu}(x) U^{\dagger}(x) \tag{12}
\end{equation*}
$$

(a) Show that in this theory the equation of motion for the A_{μ}^{a} fields are $D_{\mu} F^{a \mu \nu}=J^{a \nu}$ and that consistency of these equations requires the currents to be covariantly
conserved,

$$
\begin{equation*}
D_{\mu} J^{\mu}=\partial_{\mu} J^{\mu}+i\left[\mathcal{A}_{\mu}, J^{\mu}\right]=0 \tag{13}
\end{equation*}
$$

or in components, $\partial_{\mu} J^{a \mu}-f^{a b c} \mathcal{A}_{\mu}^{b} J^{c \mu}=0$.
Note: a covariantly conserved current does not lead to a conserved charge,

$$
\begin{equation*}
\frac{d}{d t} \int d^{3} \mathbf{x} J^{a 0}(\mathbf{x}, t) \neq 0 \tag{14}
\end{equation*}
$$

Now consider a simple example of matter fields - a fundamental multiplet $\Psi(x)$ of N scalar fields $\Psi^{i}(x)$, with a Lagrangian

$$
\begin{equation*}
\mathcal{L}_{\mathrm{mat}}=D_{\mu} \Psi^{\dagger} D^{\mu} \Psi-m^{2} \Psi^{\dagger} \Psi-\frac{\lambda}{4}\left(\Psi^{\dagger} \Psi\right)^{2}, \quad \mathcal{L}_{\mathrm{net}}=\mathcal{L}_{\mathrm{mat}}-\frac{1}{2 g^{2}} \operatorname{tr}\left(\mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}\right) \tag{15}
\end{equation*}
$$

and hence the $S U(N)$ currents are

$$
\begin{equation*}
J^{a \mu}=-g \operatorname{Im}\left(\Psi^{\dagger} \lambda^{a} D^{\mu} \Psi\right)=-\frac{i g}{2}\left(D^{\mu} \Psi^{\dagger}\right) \lambda^{a} \Psi+\frac{i g}{2} \Psi^{\dagger} \lambda^{a} D^{\mu} \Psi \tag{16}
\end{equation*}
$$

(b) Derive these $S U(N)$ currents. Then use the matrix identity

$$
\begin{equation*}
\sum_{a}\left(\lambda^{a}\right)_{j}^{i}\left(\lambda^{a}\right)_{\ell}^{k}=2 \delta_{\ell}^{i} \delta_{j}^{k}-\frac{2}{N} \delta^{i} \delta^{k}{ }_{\ell} \tag{17}
\end{equation*}
$$

to show that in the matrix form

$$
\begin{align*}
J_{\mu} \stackrel{\text { def }}{=} \sum_{a} J_{\mu}^{a} \times \frac{1}{2} \lambda^{a}= & \frac{i g}{2}\left(\left(D_{\mu} \Psi\right) \otimes \Psi^{\dagger}-\Psi \otimes D_{\mu} \Psi^{\dagger}\right) \tag{18}\\
& -\frac{i g}{2 N}\left(\Psi^{\dagger} D_{\mu} \Psi-\left(D_{\mu} \Psi^{\dagger}\right) \Psi\right) \times \mathbf{1}_{N \times N}
\end{align*}
$$

where $\left(D_{\mu} \Psi\right) \otimes \Psi^{\dagger}$ denotes $N \times N$ matrix with elements $\left(D_{\mu} \Psi\right)^{i} \times \Psi_{j}^{*}$, and likewise for the $\Psi \otimes D_{\mu} \Psi^{\dagger}$.
(c) Verify that under the $S U(N)$ gauge transforms, the currents (16) transform into each other as members of the adjoint multiplet, i.e., the matrix (18) transforms according to eq. (12).
(d) Finally, verify the covariant conservation $D_{\mu} J^{a \mu}$ of these currents when the scalar fields $\Psi^{i}(x)$ and $\Psi_{i}^{\dagger}(x)$ obey their equations of motion.
3. Now consider a different subject, namely the continuous Lorentz group $S O^{+}(3,1)$ and its generators $\hat{J}^{\mu \nu}=-\hat{J}^{\nu \mu}$. In 3D terms, the six independent $\hat{J}^{\mu \nu}$ generators comprise the 3 components of the angular momentum $\hat{J}^{i}=\frac{1}{2} \epsilon^{i j k} \hat{J}^{j k}$ - which generate the rotations of space - plus 3 generators $\hat{K}^{i}=\hat{J}^{0 i}=-\hat{J}^{i 0}$ of the Lorentz boosts.
(a) In 4D terms, the commutation relations of the Lorentz generators are

$$
\begin{equation*}
\left[\hat{J}^{\alpha \beta}, \hat{J}^{\mu \nu}\right]=i g^{\beta \mu} \hat{J}^{\alpha \nu}-i g^{\alpha \mu} \hat{J}^{\beta \nu}-i g^{\beta \nu} \hat{J}^{\alpha \mu}+i g^{\alpha \nu} \hat{J}^{\beta \mu} . \tag{19}
\end{equation*}
$$

Show that in 3D terms, these relations become

$$
\begin{equation*}
\left[\hat{J}^{i}, \hat{J}^{j}\right]=i \epsilon^{i j k} \hat{J}^{k}, \quad\left[\hat{J}^{i}, \hat{K}^{j}\right]=i \epsilon^{i j k} \hat{K}^{k}, \quad\left[\hat{K}^{i}, \hat{K}^{j}\right]=-i \epsilon^{i j k} \hat{J}^{k} . \tag{20}
\end{equation*}
$$

The Lorentz symmetry dictates the commutation relations of the $\hat{J}^{\mu \nu}$ with any operators comprising a Lorentz multiplet. In particular, for any Lorentz vector \hat{V}^{μ}

$$
\begin{equation*}
\left[\hat{V}^{\lambda}, \hat{J}^{\mu \nu}\right]=i g^{\lambda \mu} \hat{V}^{\nu}-i g^{\lambda \nu} \hat{V}^{\mu} . \tag{21}
\end{equation*}
$$

(b) Spell out these commutation relations in 3D terms, then use them to show that the Lorentz boost generators $\hat{\mathbf{K}}$ do not commute with the Hamiltonian \hat{H}.
(c) Show that even in the non-relativistic limit, the Galilean boosts $t^{\prime}=t, \mathbf{x}^{\prime}=\mathbf{x}+\mathbf{v} t$ and their generators $\hat{\mathbf{K}}_{G}$ do not commute with the Hamiltonian operator of a QFT or a quantum system of several particles.

Note: Only the time-independent symmetries commute with the Hamiltonian. But when the action of a symmetry is manifestly time dependent - like a Galilean boost $\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{v} t$, or a Lorentz boost - the symmetry operators do not commute with the time evolution and hence with the Hamiltonian.
4. Next, consider the little group $G(p)$ of Lorentz symmetries preserving some momentum 4 -vector p^{μ}. For the moment, allow the p^{μ} to be time-like, light-like, or even space-like - anything goes as long as $p \neq 0$.
(a) Show that the little group $G(p)$ is generated by the 3 components of the vector

$$
\begin{equation*}
\hat{\mathbf{R}}=p^{0} \hat{\mathbf{J}}+\mathbf{p} \times \hat{\mathbf{K}} \tag{22}
\end{equation*}
$$

after a suitable component-by-component rescaling.
Suppose the momentum p^{μ} belongs to a massive particle, thus $p^{\mu} p_{\mu}=m^{2}>0$. For simplicity, assume the particle moves in z direction with velocity β, thus $p^{\mu}=(E, 0,0, p)$ for $E=\gamma m$ and $p=\beta \gamma m$. In this case, the properly normalized generators of the little group $G(p)$ are the

$$
\begin{align*}
& \widetilde{J}^{x}=\frac{1}{m} \hat{R}^{x}=\gamma \hat{J}^{x}-\beta \gamma \hat{K}^{y} \\
& \widetilde{J}^{y}=\frac{1}{m} \hat{R}^{y}=\gamma \hat{J}^{y}+\beta \gamma \hat{K}^{x} \tag{23}\\
& \widetilde{J}^{z}=\frac{1}{\gamma m} \hat{R}^{z}=\hat{J}^{z}, \quad \text { the helicity. }
\end{align*}
$$

(b) Show that these generators have angular-momentum-like commutators with each other, $\left[\widetilde{J}^{i}, \widetilde{J}^{j}\right]=i \epsilon^{i j k} \widetilde{J}^{k}$. Consequently, the little group $G(p)$ is isomorphic to the rotation group $S O(3)$.

Now suppose the momentum p^{μ} belongs to a massless particle, $p^{\mu} p_{\mu}=0$. Again, assume for simplicity that the particle moves in the z direction, thus $p^{\mu}=(E, 0,0, E)$. In this case, we cannot normalize the generators of the little group as in eq. (23); instead, let's normalize them according to

$$
\begin{equation*}
\hat{\mathbf{I}}=\frac{1}{E} \hat{\mathbf{R}}=\hat{\mathbf{J}}+\vec{\beta} \times \hat{\mathbf{K}} \tag{24}
\end{equation*}
$$

or in components,

$$
\begin{equation*}
\hat{I}^{x}=\hat{J}^{x}-\hat{K}^{y}, \quad \hat{I}^{y}=\hat{J}^{y}+\hat{K}^{x}, \quad \hat{I}^{z}=\hat{J}^{z} \tag{25}
\end{equation*}
$$

(c) Show that these generators obey similar commutation relations to the \hat{p}^{x}, \hat{p}^{y}, and
\hat{J}^{z} operators, namely

$$
\begin{equation*}
\left[\hat{J}^{z}, \hat{I}^{x}\right]=+i \hat{I}^{y}, \quad\left[\hat{J}^{z}, \hat{I}^{y}\right]=-i \hat{I}^{x}, \quad\left[\hat{I}^{x}, \hat{I}^{y}\right]=0 \tag{26}
\end{equation*}
$$

Consequently, the little group $G(p)$ is isomorphic to the $\operatorname{ISO}(2)$ group of rotations and translations in the $x y$ plane.
(d) Finally, show that for a tachyonic momentum with $p^{\mu} p_{\mu}<0$, the properly normalized generators of the little group have similar commutation relations to the \hat{K}^{x}, \hat{K}^{y}, and \hat{J}^{z} operators. Consequently, the little group $G(p)$ is isomorphic to the $S O^{+}(2,1)$, the continuous Lorentz group in $2+1$ spacetime dimensions.

