1. Let's start with the plane-wave solutions of the Dirac equation, $\Psi_{\alpha}(x)=u_{\alpha} \times e^{-i p x}$ and $\Psi_{\alpha}(x)=v_{\alpha} \times e^{+i p x}$ for some x-independent Dirac spinors $u_{\alpha}(p, s)$ and $v_{\alpha}(p, s)$.
(a) Check that these waves indeed solve the Dirac equation provided $p^{2}=m^{2}$ while

$$
\begin{equation*}
(\not p-m) u(p, s)=0, \quad(\not p+m) v(p, s)=0 \tag{1}
\end{equation*}
$$

where $\not p$ is the Dirac slash notation for the $\gamma^{\mu} p_{\mu}$. Likewise, for any Lorentz vector a^{μ}, we may write $\not \subset$ to denote $\gamma^{\mu} a_{\mu}$.

By convention, we always take $E=p^{0}=+\sqrt{\mathbf{p}^{2}+m^{2}}$ - that's why we have separate positive-frequency waves $e^{-i p x} u_{\alpha}$ and negative-frequency waves $e^{+i p x} v_{\alpha}$ - while the spinor coefficients $u(p, s)$ and $v(p, s)$ are normalized to

$$
\begin{equation*}
u^{\dagger}(p, s) u\left(p, s^{\prime}\right)=v^{\dagger}(p, s) v\left(p, s^{\prime}\right)=2 E \delta_{s, s^{\prime}} \tag{2}
\end{equation*}
$$

In this problem we shall write down explicit formulae for these spinors in the Weyl convention for the γ^{μ} matrices.
(b) Show that for $\mathbf{p}=0$,

$$
\begin{equation*}
u(\mathbf{p}=\mathbf{0}, s)=\binom{\sqrt{m} \xi_{s}}{\sqrt{m} \xi_{s}} \tag{3}
\end{equation*}
$$

where ξ_{s} is a two-component $S O(3)$ spinor encoding the electron's spin state. The ξ_{s} are normalized to $\xi_{s}^{\dagger} \xi_{s^{\prime}}=\delta_{s, s^{\prime}}$.
(c) For other momenta, $u(p, s)=M_{D}$ (boost) $\times u(\mathbf{p}=0, s)$ for the boost that turns $(m, \overrightarrow{0})$ into p^{μ}. Use eq. (HW6.11) - i.e., eq. (11) from the previous homework set\#6 - to show that

$$
\begin{equation*}
u(p, s)=\binom{\sqrt{E-\mathbf{p} \cdot \boldsymbol{\sigma}} \xi_{s}}{\sqrt{E+\mathbf{p} \cdot \boldsymbol{\sigma}} \xi_{s}}=\binom{\sqrt{p_{\mu} \sigma^{\mu}} \xi_{s}}{\sqrt{p_{\mu} \bar{\sigma}^{\mu}} \xi_{s}} \tag{4}
\end{equation*}
$$

(d) Use similar arguments to show that

$$
\begin{equation*}
v(p, s)=\binom{+\sqrt{E-\mathbf{p} \cdot \boldsymbol{\sigma}} \eta_{s}}{-\sqrt{E+\mathbf{p} \cdot \boldsymbol{\sigma}} \eta_{s}}=\binom{+\sqrt{p_{\mu} \sigma^{\mu}} \eta_{s}}{-\sqrt{p_{\mu} \bar{\sigma}^{\mu}} \eta_{s}} \tag{5}
\end{equation*}
$$

where η_{s} are two-component $S O(3)$ spinors normalized to $\eta_{s}^{\dagger} \eta_{s^{\prime}}=\delta_{s, s^{\prime}}$.
Physically, the η_{s} should have opposite spins from the ξ_{s} - the holes in the Dirac sea have opposite spins (as well as p^{μ}) from the missing negative-energy particles. Mathematically, this requires $\eta_{s}^{\dagger} \mathbf{S} \eta_{s}=-\xi_{s}^{\dagger} \mathbf{S} \xi_{s}$; we may solve this condition by letting $\eta_{s}=\sigma_{2} \xi_{s}^{*}= \pm i \xi_{-s}^{*}$.
(e) Check that $\eta_{s}=\sigma_{2} \xi_{s}^{*}= \pm i \xi_{-s}^{*}$ indeed provides for the $\eta_{s}^{\dagger} \mathbf{S} \eta_{s}=-\xi_{s}^{\dagger} \mathbf{S} \xi_{s}$, then show that this leads to

$$
\begin{equation*}
v(p, s)=\gamma^{2} u^{*}(p, s) \quad \text { and } \quad u(p, s)=\gamma^{2} v^{*}(p, s) . \tag{6}
\end{equation*}
$$

(f) Show that for the ultra-relativistic electrons or positrons of definite helicity $\lambda= \pm \frac{1}{2}$, the Dirac plane waves become chiral - i.e., dominated by one of the two irreducible Weyl spinor components $\psi_{L}(x)$ or $\psi_{R}(x)$ of the Dirac spinor $\Psi(x)$, while the other component becomes negligible. Specifically,

$$
\begin{align*}
& u\left(p,-\frac{1}{2}\right) \approx \sqrt{2 E}\binom{\xi_{L}}{0}, \quad u\left(p,+\frac{1}{2}\right) \approx \sqrt{2 E}\binom{0}{\xi_{R}}, \\
& v\left(p,-\frac{1}{2}\right) \approx-\sqrt{2 E}\binom{0}{\eta_{L}}, \quad v\left(p,+\frac{1}{2}\right) \approx \sqrt{2 E}\binom{\eta_{R}}{0} . \tag{7}
\end{align*}
$$

Note that for the electron waves the helicity agrees with the chirality - they are both left or both right, - but for the positron waves the chirality is opposite from the helicity.

In the previous homework (set\#6, problem\#4), we saw that for $m=0$ the LH and the RH Weyl spinor fields decouple from each other. Now this exercise show us which particle modes comprise each Weyl spinor: The $\psi_{L}(x)$ and its hermitian conjugate $\psi_{L}^{\dagger}(x)$ contain the left-handed fermions and the right-handed antifermions, while the $\psi_{R}(x)$ and the $\psi_{R}^{\dagger}(x)$ contain the right-handed fermions and the left-handed antifermions.
2. In problem 1 we have worked in the Weyl convention for the Dirac matrices and Dirac spinors. In this problem we are going to establish some convention-independent properties of these Dirac spinors, - although you may use the Weyl convention formulae from problem 1 to verify them. We shall use these properties in class when we get to the Quantum Electrodynamics (QED).
(a) Dirac spinors $u(p, s)$ and $v(p, s)$ are normalized to

$$
\begin{equation*}
u^{\dagger}(p, s) u\left(p, s^{\prime}\right)=2 E_{p} \delta_{s, s^{\prime}}, \quad v^{\dagger}(p, s) v\left(p, s^{\prime}\right)=2 E_{p} \delta_{s, s^{\prime}} \tag{2}
\end{equation*}
$$

Show that the combinations $\bar{u} u$ and $\bar{v} v$ have a different normalization, namely

$$
\begin{equation*}
\bar{u}(p, s) u\left(p, s^{\prime}\right)=+2 m \delta_{s, s^{\prime}}, \quad \bar{v}(p, s) v\left(p, s^{\prime}\right)=-2 m \delta_{s, s^{\prime}} . \tag{8}
\end{equation*}
$$

(b) There are only two independent $S O(3)$ spinors, hence $\sum_{s} \xi_{s} \xi_{s}^{\dagger}=\sum_{s} \eta_{s} \eta_{s}^{\dagger}=\mathbf{1}_{2 \times 2}$. Use this fact to show that

$$
\begin{equation*}
\sum_{s=1,2} u_{\alpha}(p, s) \bar{u}_{\beta}(p, s)=(\not p+m)_{\alpha \beta} \quad \text { and } \quad \sum_{s=1,2} v_{\alpha}(p, s) \bar{v}_{\beta}(p, s)=(\not p-m)_{\alpha \beta} . \tag{9}
\end{equation*}
$$

3. In class we have studied the charge conjugation symmetry \mathbf{C} in some detail, but we spent much less time on other discrete symmetries. In this problem, we focus on the parity \mathbf{P}, an im-proper Lorentz symmetry which reflects the space but not the time, $(\mathbf{x}, t) \rightarrow(-\mathbf{x},+t)$. This symmetry acts on the Dirac spinor fields according to

$$
\begin{equation*}
\widehat{\Psi}^{\prime}(-\mathbf{x},+t)= \pm \gamma^{0} \widehat{\Psi}(+\mathbf{x},+t) \tag{10}
\end{equation*}
$$

where the overall \pm sign is the intrinsic parity of the fermion species described by the $\widehat{\Psi}$ field.
(a) Verify that the Dirac equation transforms covariantly under (10) and that the Dirac Lagrangian is invariant (apart from $\mathcal{L}(\mathbf{x}, t) \rightarrow \mathcal{L}(-\mathbf{x}, t)$).

In the Fock space, eq. (10) becomes

$$
\begin{equation*}
\widehat{\mathbf{P}} \widehat{\Psi}(\mathbf{x}, t) \widehat{\mathbf{P}}= \pm \gamma^{0} \widehat{\Psi}(-\mathbf{x}, t) \tag{11}
\end{equation*}
$$

for some unitary operator $\widehat{\mathbf{P}}$ that squares to one. Let's find how this operator acts on the particles and their states.
(b) First, check the plane-wave solutions $u(\mathbf{p}, s)$ and $v(\mathbf{p}, s)$ from problem 1, and show that $u(-\mathbf{p}, s)=+\gamma^{0} u(\mathbf{p}, s)$ while $v(-\mathbf{p}, s)=-\gamma^{0} v(\mathbf{p}, s)$.
(c) Now show that eq. (11) implies

$$
\begin{align*}
& \widehat{\mathbf{P}} \hat{a}_{\mathbf{p}, s} \widehat{\mathbf{P}}= \pm \hat{a}_{-\mathbf{p},+s}, \quad \widehat{\mathbf{P}} \hat{a}_{\mathbf{p}, s}^{\dagger} \widehat{\mathbf{P}}= \pm \hat{a}_{-\mathbf{p},+s}^{\dagger}, \\
& \widehat{\mathbf{P}} \hat{b}_{\mathbf{p}, s} \widehat{\mathbf{P}}=\mp \hat{b}_{-\mathbf{p},+s}, \quad \widehat{\mathbf{P}} \hat{b}_{\mathbf{p}, s}^{\dagger} \widehat{\mathbf{P}}=\mp \hat{b}_{-\mathbf{p},+s}^{\dagger}, \tag{12}
\end{align*}
$$

and hence

$$
\begin{equation*}
\widehat{\mathbf{P}}|F(\mathbf{p}, s)\rangle= \pm|F(-\mathbf{p},+s)\rangle \quad \text { and } \quad \widehat{\mathbf{P}}|\bar{F}(\mathbf{p}, s)\rangle=\mp|\bar{F}(-\mathbf{p},+s)\rangle . \tag{13}
\end{equation*}
$$

Note that the fermion F and the antifermion \bar{F} have opposite intrinsic parities!
4. Consider a bound state of a charged Dirac fermion F and the corresponding antifermion, for example a $q \bar{q}$ meson or a positronium "atom" (a hydrogen-atom-like bound state of e^{-} and e^{+}). For simplicity, let this bound state have zero net momentum. In the Fock space of fermions and antifermions, such a bound state appears as

$$
\begin{equation*}
\left|B\left(\mathbf{p}_{\mathrm{tot}}=0\right)\right\rangle=\int \frac{d^{3} \mathbf{p}_{\mathrm{red}}}{(2 \pi)^{3}} \sum_{s_{1}, s_{2}} \psi\left(\mathbf{p}_{\mathrm{red}}, s_{1}, s_{2}\right) \times \hat{a}^{\dagger}\left(+\mathbf{p}_{\mathrm{red}}, s_{1}\right) \hat{b}^{\dagger}\left(-\mathbf{p}_{\mathrm{red}}, s_{2}\right)|0\rangle \tag{14}
\end{equation*}
$$

for some wave-function ψ of the reduced momentum and of the two spins.
Suppose this bound state has a definite orbital angular momentum L - which controls the symmetry of the wave function ψ with respect to $\mathbf{p}_{\text {red }} \rightarrow-\mathbf{p}_{\text {red }}$ - and a definite net spin S — which controls the symmetry of ψ under $s_{1} \leftrightarrow s_{2}$. Turns out that the L and the S of the bound state also determine its C-parity and P-parity.
(a) Show that $C=(-1)^{L+S}$.
(b) Show that $P=(-1)^{L+1}$.

Now let's apply these results to the positronium - a hydrogen-atom-like bound state of a positron e^{+}and an electron e^{-}. The ground state of positronium is hydrogen-like 1 S ($n=1, L=0$), with the net spin which could be either $S=0$ or $S=1$.
(c) Explain why the $S=0$ state annihilates into photons much faster than the $S=1$ state.
Hint\#1: The annihilation rate of positronium into n photons happens in the $n^{\text {th }}$ order of QED perturbation theory, so the rate $\propto \alpha^{n}$ (for $\alpha \approx 1 / 137$).
Hint\#2: Since the EM fields couple linearly to the electric charges and currents (which are reversed by $\widehat{\mathbf{C}})$, each photon has $C=-1$.
5. Consider the bilinear products of a Dirac field $\Psi(x)$ and its conjugate $\bar{\Psi}(x)$. Generally, such products have form $\bar{\Psi} \Gamma \Psi$ where Γ is one of 16 matrices discussed in the previous homework\#6, problem 3(h). Altogether, we have
$S=\bar{\Psi} \Psi, \quad V^{\mu}=\bar{\Psi} \gamma^{\mu} \Psi, \quad T^{\mu \nu}=\bar{\Psi} \frac{i}{2} \gamma^{[\mu} \gamma^{\nu]} \Psi, \quad A^{\mu}=\bar{\Psi} \gamma^{\mu} \gamma^{5} \Psi, \quad P=\bar{\Psi} i \gamma^{5} \Psi$.
(a) Show that all the bilinears (15) are Hermitian.

Hint: First, show that $(\bar{\Psi} \Gamma \Psi)^{\dagger}=\overline{\Psi \Gamma} \Psi$.
Note: despite the Fermi statistics, $\left(\Psi_{\alpha}^{\dagger} \Psi_{\beta}\right)^{\dagger}=+\Psi_{\beta}^{\dagger} \Psi_{\alpha}$.
(b) Show that under continuous Lorentz symmetries, the S and the P transform as scalars, the V^{μ} and the A^{μ} as vectors, and the $T^{\mu \nu}$ as an antisymmetric tensor.
(c) Find the transformation rules of the bilinears (15) under parity and show that while S is a true scalar and V is a true (polar) vector, P is a pseudoscalar and A is an axial vector.

Now consider the charge-conjugation properties of the Dirac bilinears. To avoid the operator-ordering problems, take the classical limit where $\Psi(x)$ and $\Psi^{\dagger}(x)$ anticommute with each other, $\Psi_{\alpha} \Psi_{\beta}^{\dagger}=-\Psi_{\beta}^{\dagger} \Psi_{\alpha}$.
(d) Show that in the Weyl convention, \mathbf{C} turns $\bar{\Psi} \Gamma \Psi$ into $\bar{\Psi} \Gamma^{c} \Psi$ where $\Gamma^{c}=\gamma^{0} \gamma^{2} \Gamma^{\top} \gamma^{0} \gamma^{2}$.
(e) Calculate Γ^{c} for all 16 independent matrices Γ and find out which Dirac bilinears are C -even and which are C -odd.
6. Finally, a couple of optional reading assignments about the time reversal and related symmetries.
(a) Modern Quantum Mechanics by J. J. Sakurai, ${ }^{\star}$ §3.10, about the time reversal symmetry in quantum mechanics.
If you have already read the Sakurai's book before but it has been a while, please read it again.
(b) Peskin \& Schroeder textbook, §3.6, about the discrete symmetries of Dirac spinors. Focus on the subsections about the time reversal symmetry and about the combined CPT symmetry.

[^0]
[^0]: \star The UT Math-Physics-Astronomy library has several hard copies but no electronic copies of the book. However, you can find several pirate scans of the book (in PDF format) all over the web; Google them up if you cannot find a legitimate copy.

