
PHY–396 K. Problem set #7. Due October 18, 2022.

1. Let’s start with the plane-wave solutions of the Dirac equation, Ψα(x) = uα × e−ipx and

Ψα(x) = vα × e+ipx for some x-independent Dirac spinors uα(p, s) and vα(p, s).

(a) Check that these waves indeed solve the Dirac equation provided p2 = m2 while

(6p−m)u(p, s) = 0, (6p+m)v(p, s) = 0 (1)

where 6p is the Dirac slash notation for the γµpµ. Likewise, for any Lorentz vector aµ,

we may write 6a to denote γµaµ.

By convention, we always take E = p0 = +
√
p2 +m2 — that’s why we have separate

positive-frequency waves e−ipxuα and negative-frequency waves e+ipxvα — while the spinor

coefficients u(p, s) and v(p, s) are normalized to

u†(p, s)u(p, s′) = v†(p, s)v(p, s′) = 2Eδs,s′ . (2)

In this problem we shall write down explicit formulae for these spinors in the Weyl con-

vention for the γµ matrices.

(b) Show that for p = 0,

u(p = 0, s) =

(√
mξs
√
mξs

)
(3)

where ξs is a two-component SO(3) spinor encoding the electron’s spin state. The ξs

are normalized to ξ†sξs′ = δs,s′ .

(c) For other momenta, u(p, s) = MD(boost)× u(p = 0, s) for the boost that turns (m,~0)

into pµ. Use eq. (HW6.11) — i.e., eq. (11) from the previous homework set#6 — to

show that

u(p, s) =

(√
E − p · σσ ξs
√
E + p · σσ ξs

)
=

(√
pµσµ ξs√
pµσ̄µ ξs

)
. (4)
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(d) Use similar arguments to show that

v(p, s) =

(
+
√
E − p · σσ ηs

−
√
E + p · σσ ηs

)
=

(
+
√
pµσµ ηs

−
√
pµσ̄µ ηs

)
(5)

where ηs are two-component SO(3) spinors normalized to η†sηs′ = δs,s′ .

Physically, the ηs should have opposite spins from the ξs — the holes in the Dirac sea have

opposite spins (as well as pµ) from the missing negative-energy particles. Mathematically,

this requires η†sSηs = −ξ†sSξs; we may solve this condition by letting ηs = σ2ξ
∗
s = ±iξ∗−s.

(e) Check that ηs = σ2ξ
∗
s = ±iξ∗−s indeed provides for the η†sSηs = −ξ†sSξs, then show

that this leads to

v(p, s) = γ2u∗(p, s) and u(p, s) = γ2v∗(p, s). (6)

(f) Show that for the ultra-relativistic electrons or positrons of definite helicity λ = ±1
2 ,

the Dirac plane waves become chiral — i.e., dominated by one of the two irreducible

Weyl spinor components ψL(x) or ψR(x) of the Dirac spinor Ψ(x), while the other

component becomes negligible. Specifically,

u(p,−1
2) ≈

√
2E

(
ξL

0

)
, u(p,+1

2) ≈
√

2E

(
0

ξR

)
,

v(p,−1
2) ≈ −

√
2E

(
0

ηL

)
, v(p,+1

2) ≈
√

2E

(
ηR

0

)
.

(7)

Note that for the electron waves the helicity agrees with the chirality — they are

both left or both right, — but for the positron waves the chirality is opposite from the

helicity.

In the previous homework (set#6, problem#4), we saw that for m = 0 the LH and the

RH Weyl spinor fields decouple from each other. Now this exercise show us which particle

modes comprise each Weyl spinor: The ψL(x) and its hermitian conjugate ψ†L(x) contain

the left-handed fermions and the right-handed antifermions, while the ψR(x) and the ψ†R(x)

contain the right-handed fermions and the left-handed antifermions.
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2. In problem 1 we have worked in the Weyl convention for the Dirac matrices and Dirac

spinors. In this problem we are going to establish some convention-independent properties

of these Dirac spinors, — although you may use the Weyl convention formulae from prob-

lem 1 to verify them. We shall use these properties in class when we get to the Quantum

Electrodynamics (QED).

(a) Dirac spinors u(p, s) and v(p, s) are normalized to

u†(p, s)u(p, s′) = 2Epδs,s′ , v†(p, s)v(p, s′) = 2Epδs,s′ . (2)

Show that the combinations ūu and v̄v have a different normalization, namely

ū(p, s)u(p, s′) = +2mδs,s′ , v̄(p, s)v(p, s′) = −2mδs,s′ . (8)

(b) There are only two independent SO(3) spinors, hence
∑

s ξsξ
†
s =

∑
s ηsη

†
s = 12×2. Use

this fact to show that

∑
s=1,2

uα(p, s)ūβ(p, s) = (6p+m)αβ and
∑
s=1,2

vα(p, s)v̄β(p, s) = (6p−m)αβ . (9)

3. In class we have studied the charge conjugation symmetry C in some detail, but we spent

much less time on other discrete symmetries. In this problem, we focus on the parity P, an

im-proper Lorentz symmetry which reflects the space but not the time, (x, t)→ (−x,+t).
This symmetry acts on the Dirac spinor fields according to

Ψ̂′(−x,+t) = ±γ0Ψ̂(+x,+t) (10)

where the overall ± sign is the intrinsic parity of the fermion species described by the Ψ̂

field.

(a) Verify that the Dirac equation transforms covariantly under (10) and that the Dirac

Lagrangian is invariant (apart from L(x, t)→ L(−x, t)).
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In the Fock space, eq. (10) becomes

P̂Ψ̂(x, t)P̂ = ±γ0Ψ̂(−x, t) (11)

for some unitary operator P̂ that squares to one. Let’s find how this operator acts on the

particles and their states.

(b) First, check the plane-wave solutions u(p, s) and v(p, s) from problem 1, and show

that u(−p, s) = +γ0u(p, s) while v(−p, s) = −γ0v(p, s).

(c) Now show that eq. (11) implies

P̂ âp,s P̂ = ±â−p,+s , P̂ â†p,s P̂ = ±â†−p,+s ,

P̂ b̂p,s P̂ = ∓b̂−p,+s , P̂ b̂†p,s P̂ = ∓b̂†−p,+s ,
(12)

and hence

P̂ |F (p, s)〉 = ± |F (−p,+s)〉 and P̂
∣∣F (p, s)

〉
= ∓

∣∣F (−p,+s)
〉
. (13)

Note that the fermion F and the antifermion F have opposite intrinsic parities!

4. Consider a bound state of a charged Dirac fermion F and the corresponding antifermion,

for example a qq̄ meson or a positronium “atom” (a hydrogen-atom-like bound state of e−

and e+). For simplicity, let this bound state have zero net momentum. In the Fock space

of fermions and antifermions, such a bound state appears as

|B(ptot = 0)〉 =

∫
d3pred

(2π)3

∑
s1,s2

ψ(pred, s1, s2)× â†(+pred, s1) b̂
†(−pred, s2) |0〉 (14)

for some wave-function ψ of the reduced momentum and of the two spins.

Suppose this bound state has a definite orbital angular momentum L — which controls

the symmetry of the wave function ψ with respect to pred → −pred — and a definite net

spin S — which controls the symmetry of ψ under s1 ↔ s2. Turns out that the L and the

S of the bound state also determine its C-parity and P-parity.

(a) Show that C = (−1)L+S .

(b) Show that P = (−1)L+1.
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Now let’s apply these results to the positronium — a hydrogen-atom-like bound state of

a positron e+ and an electron e−. The ground state of positronium is hydrogen-like 1S

(n = 1, L = 0), with the net spin which could be either S = 0 or S = 1.

(c) Explain why the S = 0 state annihilates into photons much faster than the S = 1

state.

Hint#1: The annihilation rate of positronium into n photons happens in the nth order

of QED perturbation theory, so the rate ∝ αn (for α ≈ 1/137).

Hint#2: Since the EM fields couple linearly to the electric charges and currents (which

are reversed by Ĉ), each photon has C = −1.

5. Consider the bilinear products of a Dirac field Ψ(x) and its conjugate Ψ(x). Generally,

such products have form ΨΓΨ where Γ is one of 16 matrices discussed in the previous

homework#6, problem 3(h). Altogether, we have

S = ΨΨ, V µ = ΨγµΨ, Tµν = Ψ i
2γ

[µγν]Ψ, Aµ = Ψγµγ5Ψ, P = Ψiγ5Ψ. (15)

(a) Show that all the bilinears (15) are Hermitian.

Hint: First, show that
(
ΨΓΨ

)†
= ΨΓΨ.

Note: despite the Fermi statistics,
(

Ψ†αΨβ

)†
= +Ψ†βΨα.

(b) Show that under continuous Lorentz symmetries, the S and the P transform as scalars,

the V µ and the Aµ as vectors, and the Tµν as an antisymmetric tensor.

(c) Find the transformation rules of the bilinears (15) under parity and show that while

S is a true scalar and V is a true (polar) vector, P is a pseudoscalar and A is an axial

vector.

Now consider the charge-conjugation properties of the Dirac bilinears. To avoid the

operator-ordering problems, take the classical limit where Ψ(x) and Ψ†(x) anticommute

with each other, ΨαΨ†β = −Ψ†βΨα.

(d) Show that in the Weyl convention, C turns ΨΓΨ into ΨΓcΨ where Γc = γ0γ2Γ>γ0γ2.
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(e) Calculate Γc for all 16 independent matrices Γ and find out which Dirac bilinears are

C–even and which are C–odd.

6. Finally, a couple of optional reading assignments about the time reversal and related sym-

metries.

(a) Modern Quantum Mechanics by J. J. Sakurai,
? §3.10, about the time reversal symmetry

in quantum mechanics.

If you have already read the Sakurai’s book before but it has been a while, please read

it again.

(b) Peskin & Schroeder textbook, §3.6, about the discrete symmetries of Dirac spinors.

Focus on the subsections about the time reversal symmetry and about the combined

CPT symmetry.

? The UT Math–Physics–Astronomy library has several hard copies but no electronic copies of the book.
However, you can find several pirate scans of the book (in PDF format) all over the web; Google them up
if you cannot find a legitimate copy.
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