1. Let's start with a bunch of reading assignments.
(a) First, read carefully my notes on the Golden Rule and the phase space factors.

Note: you will need the two-particle phase space factor in problems $2-4$ of this homework, so please pay attention. Also, a later homework will involve a threeparticle phase space, so do not forget the general formulae for n final-state particles.
(b) If you have trouble following my derivation of the Fermi's Golden Rule, read the online notes of professor Wacker on the subject. Alternatively, read $\S 5.5$ of J. J. Sakurai's Modern Quantum Mechanics on time-dependent perturbation theory, and focus on the constant perturbation and the Fermi golden rule.
(c) Finally, read $\S 4.5$ of the Peskin and Schroeder textbook for an alternative explanation of the phase space factor for the scattering cross-sections.
2. Next, a warm-up exercise. Consider two species of scalar fields, Φ and ϕ, with a cubic coupling to each other,

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \Phi\right)^{2}-\frac{M^{2}}{2} \Phi^{2}+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{m^{2}}{2} \phi^{2}-\frac{\mu}{2} \Phi \phi^{2} . \tag{1}
\end{equation*}
$$

(a) Write down the vertices and the propagators for the Feynman rules for this theory.
(b) Suppose $M>2 m$, so a single Φ particle may decay to two ϕ particles. Calculate the rate Γ of this decay (in the rest frame of the original Φ) to lowest order in perturbation theory.
3. Now consider N scalar fields ϕ_{i} of the same mass m and with $O(N)$ symmetric quartic couplings to each other,

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \sum_{i}\left(\partial_{\mu} \phi_{i}\right)^{2}-\frac{m^{2}}{2} \sum_{i} \phi_{i}^{2}-\frac{\lambda}{8}\left(\sum_{i} \phi_{i}^{2}\right)^{2} . \tag{2}
\end{equation*}
$$

(a) Write down the Feynman propagators and the vertices for this theory. Then write
down the tree-level scattering amplitude $\mathcal{M}\left(\phi_{i}+\phi_{j} \rightarrow \phi_{k}+\phi_{\ell}\right)$ for general $i, j, k, \ell=$ $1, \ldots, N$.
(b) Calculate the tree-level scattering amplitudes \mathcal{M}, the partial cross-sections $d \sigma / d \Omega_{\mathrm{cm}}$ (in the center-of-mass frame), and the total cross-sections for the following 3 processes:
(i) $\phi_{1}+\phi_{2} \rightarrow \phi_{1}+\phi_{2}$.
(ii) $\phi_{1}+\phi_{1} \rightarrow \phi_{2}+\phi_{2}$.
(iii) $\phi_{1}+\phi_{1} \rightarrow \phi_{1}+\phi_{1}$.
4. Finally, for a harder exercise consider the linear sigma model. This model comprises N massless scalar or pseudoscalar fields π_{i} and one massive scalar field σ with both quartic and cubic couplings to the pions, specifically

$$
\begin{align*}
& \mathcal{L}= \frac{1}{2} \sum_{i}\left(\partial_{\mu} \pi_{i}\right)^{2} \\
&+\frac{1}{2}\left(\partial_{\mu} \sigma\right)^{2}-\frac{\lambda}{8}\left(\sum_{i} \pi_{i}^{2}+\sigma^{2}+2 f \sigma\right)^{2} \tag{3}\\
&=\frac{1}{2} \sum_{i}\left(\partial_{\mu} \pi_{i}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \sigma\right)^{2}-\frac{\lambda f^{2}}{2} \times \sigma^{2} \\
&-\frac{\lambda f}{2} \times\left(\sigma^{3}+\sigma \sum_{i} \pi_{i}^{2}\right)-\frac{\lambda}{8}\left(\sum_{i} \pi_{i}^{2}+\sigma^{2}\right)^{2}
\end{align*}
$$

Both the masslessness of the π_{i} fields and the specific relations between the quartic couplings, the cubic couplings, and the sigma's mass $M_{\sigma}^{2}=\lambda f^{2}$ in this model stem from the spontaneous breaking down of the $O(N+1)$ symmetry, which I shall explain in class later this semester. I shall also explain the relation of this model to the approximate chiral symmetry of QCD and hence to the real-life pi-mesons and their low-energy scattering amplitudes.

But in this homework, you should simply take the Lagrangian (3) as it is, and explore its implications for the scattering of π particles.
(a) Write down all the vertices and all the propagators for the Feynman rules for this theory.
(b) Draw all the tree diagrams and calculate the tree-level scattering amplitudes of two pions to two pions, $\mathcal{M}_{\text {tree }}\left(\pi^{j}+\pi^{k} \rightarrow \pi^{\ell}+\pi^{m}\right)$.
(c) Show that due to specific relations between the quartic and the cubic couplings in the Lagrangian (3), in the low-energy limit $E_{\text {tot }} \ll M_{\sigma}$, all the amplitudes $\mathcal{M}_{\text {tree }}\left(\pi^{j}+\right.$ $\left.\pi^{k} \rightarrow \pi^{\ell}+\pi^{m}\right)$ become small as $O\left(E_{\mathrm{tot}}^{2} / M_{\sigma}^{2}\right)$ or smaller.
(d) Use Mandelstam's variables s, t, u to show that when any of the incoming or outgoing pions' energy becomes small (while the other pions' energies are $O\left(M_{\sigma}\right)$), the scattering amplitudes become small as $O\left(E_{\text {small }} / M_{\sigma}\right)$ or smaller.

Later in class, we shall learn that this behavior stems from the Goldstone-Nambu theorem.
(e) Write down specific tree-level amplitudes, partial cross-sections (in the CM frame), and total cross-sections for the processes
(i) $\pi^{1}+\pi^{2} \rightarrow \pi^{1}+\pi^{2}$
(ii) $\pi^{1}+\pi^{1} \rightarrow \pi^{2}+\pi^{2}$
(iii) $\pi^{1}+\pi^{1} \rightarrow \pi^{1}+\pi^{1}$
in the low-energy limit $E_{\mathrm{cm}} \ll M_{\sigma}$.

