
PHY–396 L. Problem set #16. Due February 16, 2023.

1. First, finish the textbook problem 10.2 — calculate to one-loop order the infinite parts

of all the counterterms of the pseudoscalar Yukawa theory.

Hint: the infinite part of the four-scalar amplitude iV (k1, . . . , k4) does not depend on

the scalar’s momenta, so you may calculate it for any particular k1, . . . , k4 you like, on-

shell of off-shell. I suggest you take k1 = k2 = k3 = k4 = 0, so in any one-loop diagram

all the propagators in the loop have the same momentum q — which makes evaluating

such a diagram much simpler.

Likewise, the infinite part of the one-scalar-two-fermions amplitude Γ5(p′, p) does not

depend on the momenta p, p′, or k = p′−p, so you may calculate it for any p and p′ you

like, on-shell or off shell. Again, letting p = p′ = 0 makes for a much simpler calculation

of the one-loop diagram(s).

PS: Note that in the λph → 0 (but gph 6= 0) limit, the δλ counterterm does not vanish,

so the bare Lagrangian has a non-zero 4-pseudoscalar coupling λbare 6= 0. On the

other hand, in the gph → 0 (but λph 6= 0) limit, the δg counterterm — and hence the

bare Yukawa coupling gbare — do vanish along with the gph. This is an example of a

general rule: barring fine tuning of the coupling parameters, a renormalizable quantum

field theory has all the renormalizable couplings consistent with the theorys symmetries.

Hence, when some physical coupling happens to vanish, the corresponding bare coupling

would also vanish only if in is absence the theory would have some extra symmetry. For

example, for g = 0 the Yukawa theory gets an extra symmetry Φ → −Φ, Ψ → Ψ, so

for gph → 0 we also have δg → 0 and hence gbare → 0. On the other hand, there are no

extra symmetries for λ = 0 (but g 6= 0), so taking λph → 0 would be a fine-tuning while

δλ and hence λbare would not vanish along with the physical coupling.
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2. Next, consider the electric charge renormalization in the scalar QED — the theory of a

EM field Aµ interacting with a charged scalar field Φ. At the one-loop level, there are

two Feynman diagrams contributing to the 1PI two-photon amplitude, namely

iΣµν
1 loop = 1 loop = +

(1)

(a) Evaluate the two diagrams using dimensional regularization and verify that the net

amplitude has form

Σµν
1 loop

(k) =
(

k2gµν − kµkν
)

×Π1 loop(k
2) (2)

Note: the individual diagrams’ amplitudes do not have this form. You need to add

them up before the ‘bad’ terms cancel out.

(b) Calculate the Π1 loop(k2) due to two diagrams (1), add the δ3 counter-term’s con-

tribution, then determine the δorderα
1

3 coefficient — including its finite part, — and

write down the combined Πnet
orderα1 as a function of k2.

(c) Consider the effective coupling αeff(k
2) of the scalar QED at high off-shell momenta,

k2 ≫ m2. Show that at the one-loop level,

1

αeff(k2)
=

1

α(0)
−

1

12π

(

log
−k2

m2
−

8

3

)

+ O(α). (3)

3. Finally, a big reading assignment: My notes on the diagrammatic proof of Ward–

Takahashi identities. I shall explain this subject in class on Friday 2/10, but I might

skip over some technical details. So your task is to carefully go through the algebra, and

make sure you understand what’s going on.
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http://www.ph.utexas.edu/~vadim/Classes/2022f/WTI2.pdf
http://www.ph.utexas.edu/~vadim/Classes/2022f/WTI2.pdf

