
PHY–396 L. Problem set #20. Due March 30, 2023.

1. In problem 3 from the previous homework set#19 you (should have) calculated the free

energy of a free scalar field at a finite temperature using the functional integral methods.

In this problem, you are going to apply similar methods to the free fermionic field and to

the free EM field.

As a warm-up exercise, consider a free fermion in 0 + 1 dimensions, basically a two-level

system in Quantum Mechanics. In the Hamiltonian formulation this means

Ĥ = ωψ̂†ψ̂ where ψ̂2 = (ψ̂†)2 = 0, {ψ̂, ψ̂†} = 1, and ω = constant > 0, (1)

while in the Lagrangian formulation ψ(t) and ψ∗(t) are Grassmann-number-valued func-

tions of time (real or imaginary) and

LE = ψ∗ ×
dψ

dte
+ ω × ψ∗ψ. (2)

At finite temperature, all measurable operators must be periodic in Euclidean time with

period β, but for the fermionic fields this means that the bilinears must be periodic while

the fermionic fields themselves can be either periodic or anti-periodic, ψ(te + β) = ±ψ(te).

(a) To determine the right choice — periodic or anti-periodic, — use the functional inte-

gral to calculate the partition function for both types of boundary conditions for the

fermionic variables in the Euclidean time, ψ(tE+β) = ±ψ(tE). Show that the periodic

condition leads to an unphysical partition function, while the anti-periodic condition

leads to the correct partition function of a two-level system.

The lesson of part (a) applies to fermionic fields in all spacetime dimensions D: At a

finite temperature T = 1/β, all fermionic fields must be antiperiodic in the Euclidean time

xD = te = ix0,

Ψ(x, te + β) = −Ψ(x, te). (3)

(b) Now let’s apply this lesson to the free Dirac field in 3+1 dimensions. Use the functional
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integral over the fermionic fields to show that the free energy of this field is

F (T ) = −T log Detfunctional[6∂E +m]. (4)

Then evaluate the functional trace here in the momentum basis and show that the free

energy density is

F(T )
def
=

F (T )

Volume
= −T

∫

d3p

(2π)3

∑

p4

trDirac

(

log(i 6pE +m)
)

(5)

= −T

∫

d3p

(2π)3

∑

p4

2 log(p2E +m2). (6)

where the sum over p4 runs over

p4 = 2πT ×
(

a half-integer = ±1
2 ,±

3
2 ,±

5
2 , . . .

)

. (7)

(c) Use Poisson resummation — cf. the preamble of the previous homework#19 — to

show that

F(T ) − F(0) = 4
+∞
∑

ℓ=1

(−1)ℓ−1

∫

d4pE
(2π)4

eiβℓp4 × log(p2E +m2) (8)

and hence

F(T ) − F(0) = −4T

∫

d3p

(2π)3
log

(

1 + e−βE(k)
)

, (9)

in perfect agreement with the Fermi–Dirac statistics.

Finally, consider the free electromagnetic field Aµ(x). At finite temperature, the Aµ(x)

— just like any other bosonic field — is periodic in the Euclidean time, Aµ(x, x4 + β) =

+Aµ(x, x4). Calculate the partition function for the periodic EM field and mind the gauge-

fixing terms in the Lagrangian and the Fadde’ev–Popov determinant in the functional

integral.
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(d) Show that formally, the EM free energy is

F (T ) = +T × Tr log
(

−∂2E
)

(10)

where the trace is over the Hilbert space of 4D wave functions periodic in the Euclidean

time.

(e) Recycle arguments from the scalar field case in the previous homework set to show

that eq. (10) leads to

F(T ) − F(0) =

∫

d3p

(2π)3
2T ×

(

1− e−β|p|
)

. (11)

2. Next, an exercise in group theory you would need for QCD and QCD-like gauge theories.

Consider a generic simple non-abelian compact Lie group G and its generators T a. For a

suitable normalization of the generators,

tr(r)(T
aT b) ≡ tr

(

T a
(r)T

b
(r)

)

= R(r)δab (12)

where the trace is taken over any complete multiplet (r) — irreducible or reducible, it does

not matter — and T a
(r) is the matrix representing the generator T a in that multiplet. The

coefficient R(r) in eq. (12) depends on the multiplet (r) but it’s the same for all generators

T a and T b. This coefficient R(r) is called the index of the multiplet (r).

The quadratic Casimir operator C2 =
∑

a T
aT a of the Lie algebra commutes with all the

algebra’s generators, ∀b : [C2, T
b] = 0. Consequently, when we restrict this operator to

any irreducible multiplet (r) of the group G, it becomes a unit matrix times some number

C(r). In other words,

for an irreducible (r),
∑

a

T a
(r)T

a
(r) = C(r)× 1(r) . (13)

For example, for the isospin group SU(2), the Casimir operator is C2 = ~I2, the irreducible

multiplets have definite isospins I = 0, 12 , 1,
3
2 , 2, . . ., and the corresponding Casimir eigen-

values are C(I) = I(I + 1).
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(a) Show that for any irreducible multiplet (r), its index R(r) and its Casimir eigenvalue

C(r) are related to each other as

R(r)

C(r)
=

dim(r)

dim(G)
. (14)

In particular, for the SU(2) group, this formula gives

R(I) = 1
3I(I + 1)(2I + 1). (15)

(b) Suppose the first three generators T 1, T 2, and T 3 of G generate an SU(2) subgroup,

thus

[T 1, T 2] = iT 3, [T 2, T 3] = iT 1, [T 3, T 1] = iT 2. (16)

Show that if a multiplet (r) of G decomposes into several SU(2) multiplets of isospins

I1, I2, . . . , In, then

R(r) =
n
∑

i=1

1
3Ii(Ii + 1)(2Ii + 1). (17)

(c) Now consider the SU(N) group with an obvious SU(2) subgroup of matrices acting

only on the first two components of a complex N -vector. This complex N -vector is

called the fundamental multiplet (of the SU(N)) and denoted (N) or N. As far as the

SU(2) subgroup is concerned, (N) comprises one doublet and N − 2 singlets, hence

R(N) =
1

2
and C(N) =

N2 − 1

2N
. (18)

Show that the adjoint multiplet of the SU(N) decomposes into one SU(2) triplet,

2(N − 2) doublets, and (N − 2)2 singlets, therefore

R(adj) = C(adj) ≡ C(G) = N. (19)

Hint: (N)× (N) = (adj) + (1).

(d) The symmetric and the anti-symmetric 2–index tensors form irreducible multiplets of

the SU(N) group. Find out the decomposition of these multiplets under the SU(2) ⊂

SU(N) and calculate their respective indices R and Casimirs C.
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3. Finally, let’s apply this group theory to physics. Consider quark-antiquark pair production

in QCD, specifically uū→ dd̄. There is only one tree diagram contributing to this process,

u ū

d d̄

(20)

Evaluate this diagram, then sum/average the |M|2 over both spins and colors of the fi-

nal/initial particles to calculate the total cross section. For simplicity, you may neglect the

quark masses.

Note that the diagram (20) looks exactly like the QED pair production process e−e+ →

virtual γ → µ−µ+, so you can re-use the QED formula for summing/averaging over the

spins, cf. my notes on Dirac traceology from the Fall semester, pages 10–13. But in QCD,

you should also sum/average over the colors of all the quarks, and that’s the whole point

of this exercise.
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