
PHY–396 L. Problem set #23. Due April 13, 2023.

1. Consider the three gauge couplings of the SU(3) × SU(2) × U(1) Standard Model and

their one-loop beta-functions
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In this exercise, you do not need to calculate these beta-function from scratch by evaluat-

ing the UV divergences of a bunch of loop diagrams. Instead, use eqs. (122) and (124–5)

from my notes on QCD beta-function (pages 25–26).

(a) Calculate the b1, b2, b3 coefficients for the minimal version of the Standard Model:

the SU(3)× SU(2) × U(1) gauge fields, one Higgs doublet, three families of quarks

and leptons, and nothing else.

⋆ FYI, each family comprises 8 left-handed Weyl fields in the (3, 2, y = +1
6
) and

(1, 2, y = −1
2
) multiplets of the gauge symmetry and 7 right-handed Weyl fermions

in the (3, 1, y = +2
3
), (3, 1, y = −1

3
), and (1, 1, y = −1) multiplets.

(b) Re-calculate the b1, b2, b3 for the MSSM — the Minimal Supersymmetric Standard

Model. FYI, here is complete list of the MSSM fields:

◦ The SU(3)× SU(2)× U(1) gauge fields, same as the non-SUSY SM.

• For each vector field there is a Majorana fermion (a gaugino) with similar SU(3) ×

SU(2)×U(1) quantum numbers. Altogether, there is an adjoint multiplet of gauginos

for each factor of the gauge symmetry.

◦ 3 families of quarks and leptons, same as the non-SUSY SM.

• For each Weyl fermion — left-handed or right-handed — in these three families,

the MSSM also have a complex scalar field (a squark or a slepton) with similar

SU(3)× SU(2)×U(1) quantum numbers. Altogether, this makes 45 complex scalar

fields in similar multiplets to the quarks and leptons.

• The Higgs sector of the MSSM comprises two SU(2) doublets of complex scalars ac-

companied by one SU(2) doublet of Dirac fermions (the higgsinos); all these doublets

have y = 1
2
.
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— There are all kinds of Yukawa and φ4 interactions between the MSSM fields, but you

do not need them for the one-loop calculation of the gauge couplings’ beta-functions.

In Grand Unified Theories

α3 = α2 = 5
3
α1 = αGUT at the GUT scale. (2)

At lower energy scales E ≪ MGUT the SM couplings are given (lo the leading one-loop

order) by the Georgi–Quinn–Weinberg equations
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(c) Derive these equations from eqs. (1).

The experimental data are usually interpreted in terms of the MS gauge couplings at the

Z0 mass MZ ≈ 91 GeV; according to the latest particle data group publication

1

α3(MZ)
≈ 8.45±0.12,

1

α2(MZ)
≈ 29.585±0.005,

1

α1(MZ)
≈ 98.369±0.009. (4)

Since the top quark and the Higgs boson are heavier than MZ , let me translate these

data to the MS couplings at E = Mtop ≈ 173 GeV:

1

α3(Mt)
≈ 9.18± 0.12,

1

α2(Mt)
≈ 30.028± 0.005,

1

α1(Mt)
≈ 97.84± 0.01. (5)

(d) Check that these data are not consistent with eq. (3) for the minimal Standard Model.

(e) Now consider the Minimal Supersymmetric Standard Model. For simplicity, assume

that all the super-partners — or rather all particles of the MSSM not present in the

non-supersymmetric minimal SM — have masses M ≈ Mtop ≈ 173 GeV; this has

been ruled out experimentally, but it’s a useful toy model.
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Show that for this model — unlike for the minimal non-SUSY Standard Model, —

the experimental gauge couplings (5) are consistent with the Georgi–Quinn–Weinberg

eqs. (3). Also, calculate the GUT scale MGUT for this model.

(f) Finally, consider a more realistic model, namely MSSM in which all the extra particles

have the same mass MS = 2 TeV, just out of LHS’s reach.

To check the consistency of this model, first extrapolate the experimental gauge

couplings (5) from the Mtop scale to the MS scale using the beta-function coefficients

b1,2,3 of the non-SUSY Standard Model. And then check whether the resulting gauge

couplings are consistent with eq. (3) for the MSSM.

2. Now consider the axial anomaly in a non-abelian gauge theory, for example QCD with

Nf massless quark flavors,

Jµ
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)

(6)

where Fµν is the non-abelian gauge field strength.

(a) Expand the right hand side of eq. (6) into 2–gluon, 3–gluon, and 4–gluon terms and

show that the 4–gluon term vanishes identically.

Hint: Use the cyclic symmetry of the trace.

The two-gluon anomaly term obtains from the triangle diagrams

b

b

b

b + gluon permutation. (7)

This works exactly as discussed in class for the QED, except in QCD we should trace

FαβFγδ over the quarks’ colors and flavors. But in QCD there is also the three-gluon
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anomaly (cf. part (a)) which obtains from the quadrangle diagrams

b
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Since the quadrangle diagrams suffer from linear UV divergences, we need to regulate

them, so let’s use the Pauli–Villars regulator.

(b) First, show that
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(9)

(c) Second, evaluate the the quadrangle diagrams for the Pauli–Villars compensators and

derive the three-gluon anomaly in QCD.

3. Next, a reading assignment: §22.2–3 of Weinberg about the chiral anomaly. Pay partic-

ular attention to the Jacobian of the fermion path integral and to regularization of the

functional trace.

4. Finally, one more reading assignment: §19.3 of Peskin & Schroeder about the chiral

symmetry of QCD and the pions.

For a deeper discussion of pions (and Goldstone bosons in general), please also read

chapter 19 of Weinberg.
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