
PHY–396 L. Problem set #23. Due April 20, 2023.

? This whole homework follows on the two reading assignments from the previous home-

work set#22. Specifically, problems 1 and 2 about axial anomalies in various spacetime

dimensions follow up on Weinberg §22.3–3, while problems 3 and 4 about pion decays

follow up on Peskin & Schroeder §19.3 and Weinberg chapter 19.

1. Following up on Weinberg’s analysis of the axial anomaly of the fermionic functional

integral’s measure (§22.2-3) in d = 4 dimensions, let’s generalize it to other even spacetime

dimensions d = 2n. In any such dimension there a matrix Γ which acts as the γ5 in 4D

— Γγµ = −γµΓ for all µ = 1, 2, . . . d. Consequently, a massless Dirac fermion in d = 2n

dimensions has a classical axial symmetry

Ψ(x) → exp(iθΓ)Ψ(x), Ψ(x) → Ψ(x) exp(iθΓ), (1)

which leads to a classically conserved current

JµA = ΨγµΓΨ, ∂µJ
µ
A = classically = 0. (2)

But when the fermion Ψ is coupled to a gauge field — or a multiplet of such fermions

is coupled to a non-abelian gauge field — the axial symmetry is broken by the anomaly,

thus

∂µJ
µ
A = +

2

n!

(
−g
4π

)n
εα1β1α2β2···αnβn tr

(
Fα1β1Fα2β2 · · ·Fαnβn

)
. (3)

Generalize Weinberg’s calculation of the anomaly via the Jacobian of the fermionic path

integral to any even spacetime dimension d = 2n.

For your information, in 2n Euclidean dimensions {γµ, γν} = +2δµν , Γ = in−2γ1γ2 · · · γ2n,

{Γ, γµ} = 0, Γ2 = +1, and for any 2n = d matrices γα, . . . , γω, tr(Γγαγβ · · · γω) =

2ni2−nεαβ···ω.
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2. In any even dimension d = 2n, the right hand side of the anomaly equation (3) is always

a total derivative,

εα1β1···αnβn tr
(
Fα1β1 · · · Fαnβn

)
= ∂µΩµ

(2n−1)
(4)

where Ωµ
(2n−1)

is some polynomial in gauge fields Aν = gAν and Fρσ = gF ρσ, for example

in d = 2, Ωµ
(1)

= 2εµν tr(Aν) [abelian Aν only],

in d = 4, Ωµ
(3)

= 2εµνρσ tr
(
AνFρσ − 2i

3 AνAρAσ
)
,

in d = 6, Ωµ
(5)

= 2εµνρσαβ tr
(
AνFρσFαβ − iAνAρAσFαβ − 2

5 AνAρAσAαAβ
)
,

(5)

etc., etc. The Ωµ
(2n−1)

vectors are equivalent to (2n − 1)–index totally antisymmetric

tensors called the Chern–Simons forms, and those forms play many important roles in

gauge theory and string theory. In particular, we may use the Ωµ
(2n−1)

to define a conserved

axial current

JµA → JµAC = ΨγµΓΨ +
1

n!

( g

4π

)n
× Ωµ

(2n−1)
. (6)

(Its conservation follows from eqs. (3) and (4).) However, the price of this current con-

servation is the loss of gauge invariance: the original axial current JµA is gauge invariant,

but the JµAC is not.

(a) You task is to verify eqs. (4) for d = 2, 4, 6.

The Chern–Simons vectors (5) are not gauge invariant, but their variations under the

infinitesimal gauge transforms are total derivatives of antisymmetric tensors,

δΩµ
(2n−1)

= −2∂νH
µν
(2n−2)

, Hµν
(2n−2)

= −Hνµ
(2n−2)

. (7)

Specifically, for d = 2n = 2, 4, 6:

in d = 2, Hµν
(0)

= εµν tr(Λ) [abelian Aν only],

in d = 4, Hµν
(2)

= 2εµνρσ tr
(
Λ× ∂ρAσ

)
,

in d = 6, Hµν
(4)

= 4εµνρσαβ tr
(
Λ× ∂ρ

(
Aσ∂αAβ + i

2AσAα Aβ
))
.

(8)

(b) Verify eqs. (7) for these H tensors.

Note: for d = 2 eq. (7) is trivial, while for d = 4 it’s very similar to problem 2(b) of

the Fall˜2022 midterm exam. But for d = 6 you have to work it out from scratch.
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3. The pions are pseudo-Goldstone bosons of the spontaneously broken chiral symmetry of

QCD, so they can be created or annihilated by the axial isospin currents

Jaµ5(x) = Ψ(ū, d̄)γµγ5

(
τa

2

)
isospin

Ψ(u, d) = −fπ∂µπa(x) + multi-pion terms. (9)

The fπ in this formula is the pion decay constant because it controls the decay rate of the

charged pions, mostly into muons and neutrinos, π+ → µ+νµ and π− → µ−ν̄µ. In this

exercise, we shall see how this works. Experimentally, fπ ≈ 93 MeV.

The weak interactions at energies O(Mπ) � MW are governed by the Fermi’s current-

current effective Lagrangian

LFermi = −2
√

2GFJ
+α
L J−

Lα (10)

where L±α
L = 1

2(J±α
V − J±α

A ) are the left-handed charged currents. In terms of the quark

and lepton fields,

J+α
L = 1

2Ψ(νµ)(1− γ5)γαΨ(µ) + cos θc × 1
2Ψ(u)(1− γ5)γαΨ(d) + · · · ,

J−α
L = 1

2Ψ(µ)(1− γ5)γαΨ(νµ) + cos θc × 1
2Ψ(d)(1− γ5)γαΨ(u) + · · · ,

(11)

where the · · · stand for other fermions of the Standard Model, and θc ≈ 13◦ is the Cabibbo

angle.

For the pion decay process, the axial part of one of the charged currents annihilates the

charged pion according to eq. (9) while the other charged current creates the lepton pair.

(a) Show that

〈vacuum| Ĵ−α
L

∣∣π+
〉

=
ifπ cos θc√

2
× pα(π+) (12)

and therefore the tree-level pion decay amplitude is

M =
〈
µ+, ν̄µ

∣∣ ˆ̂
LFermi

∣∣π+
〉

= iGffπ cos θc× pα(π+)× ū(νµ)(1− γ5)γαv(µ+). (13)

(b) Sum over the fermion spins and calculate the decay rate Γ(π+ → µ+νµ).
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(c) Experimentally, fπ ≈ 93 MeV, Mπ ≈ 140 MeV, Mµ ≈ 106 MeV, Mν ≈ 0, GF ≈
1.17 · 10−5 GeV−2, and θc ≈ 13◦. Use these data to calculate the charged pion’s

lifetime and compare to the experimental value τ(π±) = 2.6× 10−8 s.

(d) The charged pions decay to muons much more often than they decay to electrons,

Γ(π+ → e+νe)

Γ(π+ → µ+νµ)
=

M2
e

M2
µ

(1− (Me/Mπ)2)2

(1− (Mµ/Mπ)2)2
≈ 1.2 · 10−4. (14)

Derive this formula, then explain this preference for the heavier final-state lepton in

terms of the mismatch between that lepton’s chirality and helicity.

4. Finally, consider the neutral pion decay into two photons, π0 → γγ. This decay is

facilitated by the QED anomaly of the axial isospin current J3
µ5 = −fπ∂µπ0 + · · ·, cf.

eq. (9). As explained in class,

tr

(
τ3

2
×Q2

el

)
=

e2

2
(15)

hence (
∂µJ3

µ5

)
anomalous

= − e2

32π2
εαβµνFαβFµν , (16)

which may be explained by an effective Lagrangian for the neutral pion field

Leff = 1
2(∂µπ

0)2 +
e2

32π2 fπ
π0 × εαβµνFαβFµν . (17)

In real life, there is an additional contribution to the axial current divergence ∂µJ3
µ5 due

to non-zero quark masses; in terms of the effective Lagrangian (17) this extra term can

be accounted by the pions mass2 term, thus

Leff =
1

2
(∂µπ

0)2 − M2
π

2
(π0)2 +

e2

32π2 fπ
π0 × εαβµνFαβFµν . (18)

The interaction term here gives rise to the pion decay amplitude

M(π0 → γγ) = − α

πfπ
× εαβµν(kαe

∗
β)1(kµe

∗
ν)2 . (19)

(a) Derive this amplitude.

4



(b) Sum |M|2 over the two photon’s polarizations and calculate the neutral pion’s decay

rate.

(c) Experimentally, Mπ ≈ 135 MeV (for the neutral pion), fπ ≈ 93 MeV, and α ≈ 1/137.

Calculate the numerical value of the neutral pion’s lifetime for these data and compare

to the experimental value of τ(π0) ≈ 8.5× 10−17 s.
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