PHY-396 K. Optional problem about the magnetic monopoles.
Due by the end of the Fall 22 semester.

Some theories of fundamental interaction predict the existence of dyons — magnetic
monopoles that also have electric charges. Dyons are usually very heavy compared to ordi-
nary particles, so when an ordinary charged particle orbits a dyon, the latter can be thought
as a static source of the electric and the magnetic fields: In Gauss units,
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So let’s consider the motion of a spinless non-relativistic particle of mass m and electric

charge ¢ in these static fields.

Let’s start with the classical motion of the particle in question. It’s net angular momen-
tum is
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where © = mv is the kinematic momentum of the particle rather that its canonical momen-
tum.

(a) Verify that it is this net angular momentum that is conserved by the classical motion

of the particle, dJ/dt = 0.

In quantum mechanics, we have a similar formula for the net angular momentum,
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In light of eq. (4), the (equal time) commutation relations for the position and kinematic



momentum operators are
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(b) Use these commutation relation to show that the components of the angular momentum
operator (3) indeed commute with each other — and with the other vectors — as

legitimate angular momentum operators. Specifically,
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(c) Show that the operators J; are conserved, i.e., that they commute with the particle’s

Hamiltonian
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The vector potential due to the magnetic charge of the dyon can be written in spherical
coordinates as
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where ey is the unit vector in the ¢ direction while the two signs correspond to the two
different gauge choices for the Dirac monopole: ‘+’ for the Ay potential on the Northern
side of the dyon (0 < 6 < 7 — ¢), and ‘—’ for the Ag potential on the Southern side
(e <0 <m).



(d) Show that for these gauge choices, the J, operator acts in the spherical coordinate basis

as
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Note that thanks to the Dirac’s charge quantization rule, the F(qM/c) factor in the
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second term here is always an integer or half-integer multiple of .

(e) Likewise, show that the other two components of the angular momentum have form
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Now let’s look for the simultaneous eigenstates |n, 7, m) of the J2 and J, operators. By
the usual rules of the angular momenta, for each given n and j, m runs from —j to +j by

1. However, in presence of the dyon, the spectrum of j is different from the spectrum of /¢

for the ordinary orbital angular momentum: Instead of / =0,1,2,3, ..., we now have
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In particular, for a half-integral ¢M /he, we have j running over half-integral rather than

integral values.
(f) Use egs. (12) and (13) to obtain this spectrum of allowed values of j.

Now let’s diagonalize the Hamiltonian (10). As a first step, let’s separate the radial and

)
the angular directions of the operator 7 .

(g) Use the commutation relations (5) through (9) to show that
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coordinate basis or

where



(h) Finally, write down the radial Schrodinger equation for a given j and show that for

qQ < 0 the bound state energies are
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where n, is a positive integer 1, 2,3, ... while v is the positive root of
AA+1) = j(G+1) — (¢M/he). (18)
By comparison, in the absence of the magnetic charge jis ¢ =0,1,2,3,..., hence A = ¢,

and n, + A = n, + £ is the principle quantum number N.



