PHY-396 K. Optional problem about the magnetic monopoles.
Due by the end of the Fall 22 semester.

Some theories of fundamental interaction predict the existence of dyons - magnetic monopoles that also have electric charges. Dyons are usually very heavy compared to ordinary particles, so when an ordinary charged particle orbits a dyon, the latter can be thought as a static source of the electric and the magnetic fields: In Gauss units,

$$
\begin{equation*}
\mathbf{E}(\mathbf{x})=\frac{Q}{r^{2}} \mathbf{n}, \quad \mathbf{B}(\mathbf{x})=\frac{M}{r^{2}} \mathbf{n} . \tag{1}
\end{equation*}
$$

So let's consider the motion of a spinless non-relativistic particle of mass m and electric charge q in these static fields.

Let's start with the classical motion of the particle in question. It's net angular momentum is

$$
\begin{equation*}
\mathbf{J}=\mathbf{L}_{\mathrm{mech}}+\mathbf{J}_{\mathrm{EM}}=\mathbf{x} \times \vec{\pi}-\frac{q M}{c} \mathbf{n} \tag{2}
\end{equation*}
$$

where $\vec{\pi}=m \mathbf{v}$ is the kinematic momentum of the particle rather that its canonical momentum.
(a) Verify that it is this net angular momentum that is conserved by the classical motion of the particle, $d \mathbf{J} / d t=0$.

In quantum mechanics, we have a similar formula for the net angular momentum,

$$
\begin{equation*}
\hat{\mathbf{J}}=\hat{\mathbf{x}} \times \overrightarrow{\hat{\pi}}-\frac{q M}{c} \frac{\hat{\mathbf{x}}}{\hat{r}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\overrightarrow{\hat{\pi}}=\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}(\hat{\mathbf{x}}) . \tag{4}
\end{equation*}
$$

In light of eq. (4), the (equal time) commutation relations for the position and kinematic
momentum operators are

$$
\begin{equation*}
\left[\hat{x}_{i}, \hat{x}_{j}\right]=0, \quad\left[\hat{x}_{i}, \hat{\pi}_{j}\right]=i \hbar \delta_{i j} \tag{5}
\end{equation*}
$$

but

$$
\begin{equation*}
\left[\hat{\pi}_{i}, \hat{\pi}_{j}\right]=\frac{i q \hbar}{c} \epsilon_{i j k} B_{k}(\hat{\mathbf{x}}) \xrightarrow[\text { in the dyon field }]{ } \frac{i q M \hbar}{c} \epsilon_{i j k} \frac{\hat{x}_{k}}{\hat{r}^{3}} . \tag{6}
\end{equation*}
$$

(b) Use these commutation relation to show that the components of the angular momentum operator (3) indeed commute with each other - and with the other vectors - as legitimate angular momentum operators. Specifically,

$$
\begin{align*}
{\left[\hat{x}_{i}, \hat{J}_{j}\right] } & =i \hbar \epsilon_{i j k} \hat{x}_{k}, \tag{7}\\
{\left[\hat{\pi}_{i}, \hat{J}_{j}\right] } & =i \hbar \epsilon_{i j k} \hat{\pi}_{k}, \tag{8}\\
{\left[\hat{J}_{i}, \hat{J}_{j}\right] } & =i \hbar \epsilon_{i j k} \hat{J}_{k} \tag{9}
\end{align*}
$$

(c) Show that the operators \hat{J}_{i} are conserved, i.e., that they commute with the particle's Hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{\overrightarrow{\hat{\pi}}^{2}}{2 m}+\frac{Q q}{\hat{r}} . \tag{10}
\end{equation*}
$$

The vector potential due to the magnetic charge of the dyon can be written in spherical coordinates as

$$
\begin{equation*}
\mathbf{A}_{N, S}(r, \theta, \phi)=M \frac{ \pm 1-\cos \theta}{r \sin \theta} \cdot \mathbf{e}_{\phi} \tag{11}
\end{equation*}
$$

where \mathbf{e}_{ϕ} is the unit vector in the ϕ direction while the two signs correspond to the two different gauge choices for the Dirac monopole: ' + ' for the \mathbf{A}_{N} potential on the Northern side of the dyon $(0 \leq \theta<\pi-\epsilon)$, and ' - ' for the \mathbf{A}_{S} potential on the Southern side $(\epsilon<\theta \leq \pi)$.
(d) Show that for these gauge choices, the \hat{J}_{z} operator acts in the spherical coordinate basis as

$$
\begin{equation*}
\hat{J}_{z}=-i \hbar \frac{\partial}{\partial \phi} \mp \frac{q M}{c} \psi \tag{12}
\end{equation*}
$$

Note that thanks to the Dirac's charge quantization rule, the $\mp(q M / c)$ factor in the second term here is always an integer or half-integer multiple of \hbar.
(e) Likewise, show that the other two components of the angular momentum have form

$$
\begin{align*}
& \hat{J}_{+}=\hat{J}_{x}+i \hat{J}_{y}=\hbar e^{+i \phi}\left[+\frac{\partial}{\partial \theta}+i \cot \theta \times \frac{\partial}{\partial \phi}-\frac{q M}{\hbar c} \frac{1 \mp \cos \theta}{\sin \theta}\right] \\
& \hat{J}_{-}=\hat{J}_{x}-i \hat{J}_{y}=\hbar e^{-i \phi}\left[-\frac{\partial}{\partial \theta}+i \cot \theta \times \frac{\partial}{\partial \phi}-\frac{q M}{\hbar c} \frac{1 \mp \cos \theta}{\sin \theta}\right] \tag{13}
\end{align*}
$$

Now let's look for the simultaneous eigenstates $|n, j, m\rangle$ of the $\hat{\mathbf{J}}^{2}$ and \hat{J}_{z} operators. By the usual rules of the angular momenta, for each given n and j, m runs from $-j$ to $+j$ by 1. However, in presence of the dyon, the spectrum of j is different from the spectrum of ℓ for the ordinary orbital angular momentum: Instead of $\ell=0,1,2,3, \ldots$, we now have

$$
\begin{equation*}
j=j_{\min }, j_{\min }+1, j_{\min }+2, \ldots \quad \text { where } \quad j_{\min }=\frac{|q M|}{\hbar c} \tag{14}
\end{equation*}
$$

In particular, for a half-integral $q M / \hbar c$, we have j running over half-integral rather than integral values.
(f) Use eqs. (12) and (13) to obtain this spectrum of allowed values of j.

Now let's diagonalize the Hamiltonian (10). As a first step, let's separate the radial and the angular directions of the operator $\vec{\pi}^{2}$.
(g) Use the commutation relations (5) through (9) to show that

$$
\begin{equation*}
\overrightarrow{\hat{\pi}}^{2}=\hat{\pi}_{r}^{2}+\frac{1}{\hat{r}^{2}}\left(\overrightarrow{\hat{J}}^{2}-\left(\frac{q M}{c}\right)^{2}\right) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\pi}_{r}=\frac{1}{2}\left\{\hat{n}_{i}, \hat{\pi}_{i}\right\} \xrightarrow[\text { coordinate basis }]{\longrightarrow}-i \hbar\left(\frac{\partial}{\partial r}+\frac{1}{r}\right) . \tag{16}
\end{equation*}
$$

(h) Finally, write down the radial Schrödinger equation for a given j and show that for $q Q<0$ the bound state energies are

$$
\begin{equation*}
E\left(n_{r}, j\right)=-\frac{m(q Q)^{2}}{2 \hbar^{2}} \times \frac{1}{\left(n_{r}+\lambda\right)^{2}} \tag{17}
\end{equation*}
$$

where n_{r} is a positive integer $1,2,3, \ldots$ while ν is the positive root of

$$
\begin{equation*}
\lambda(\lambda+1)=j(j+1)-(q M / \hbar c)^{2} \tag{18}
\end{equation*}
$$

By comparison, in the absence of the magnetic charge j is $\ell=0,1,2,3, \ldots$, hence $\lambda=\ell$, and $n_{r}+\lambda=n_{r}+\ell$ is the principle quantum number N.

