
PHY–396 K. Optional problem about the magnetic monopoles.

Due by the end of the Fall 22 semester.

Some theories of fundamental interaction predict the existence of dyons — magnetic

monopoles that also have electric charges. Dyons are usually very heavy compared to ordi-

nary particles, so when an ordinary charged particle orbits a dyon, the latter can be thought

as a static source of the electric and the magnetic fields: In Gauss units,

E(x) =
Q

r2
n, B(x) =

M

r2
n. (1)

So let’s consider the motion of a spinless non-relativistic particle of mass m and electric

charge q in these static fields.

Let’s start with the classical motion of the particle in question. It’s net angular momen-

tum is

J = Lmech + JEM = x× ~π − qM

c
n (2)

where ~π = mv is the kinematic momentum of the particle rather that its canonical momen-

tum.

(a) Verify that it is this net angular momentum that is conserved by the classical motion

of the particle, dJ/dt = 0.

In quantum mechanics, we have a similar formula for the net angular momentum,

Ĵ = x̂× ~̂π − qM

c

x̂

r̂
(3)

where

~̂π = p̂ − q

c
A(x̂). (4)

In light of eq. (4), the (equal time) commutation relations for the position and kinematic
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momentum operators are

[x̂i, x̂j ] = 0, [x̂i, π̂j ] = ih̄δij , (5)

but

[π̂i, π̂j ] =
iqh̄

c
εijkBk(x̂) −−−−−−−−→

in the dyon field

iqMh̄

c
εijk

x̂k
r̂3
. (6)

(b) Use these commutation relation to show that the components of the angular momentum

operator (3) indeed commute with each other — and with the other vectors — as

legitimate angular momentum operators. Specifically,

[x̂i, Ĵj ] = ih̄εijk x̂k , (7)

[π̂i, Ĵj ] = ih̄εijk π̂k , (8)

[Ĵi, Ĵj ] = ih̄εijk Ĵk . (9)

(c) Show that the operators Ĵi are conserved, i.e., that they commute with the particle’s

Hamiltonian

Ĥ =
~̂π

2

2m
+

Qq

r̂
. (10)

The vector potential due to the magnetic charge of the dyon can be written in spherical

coordinates as

AN,S(r, θ, φ) = M
±1− cos θ

r sin θ
· eφ , (11)

where eφ is the unit vector in the φ direction while the two signs correspond to the two

different gauge choices for the Dirac monopole: ‘+’ for the AN potential on the Northern

side of the dyon (0 ≤ θ < π − ε), and ‘−’ for the AS potential on the Southern side

(ε < θ ≤ π).
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(d) Show that for these gauge choices, the Ĵz operator acts in the spherical coordinate basis

as

Ĵz = −ih̄ ∂
∂φ
∓ qM

c
ψ. (12)

Note that thanks to the Dirac’s charge quantization rule, the ∓(qM/c) factor in the

second term here is always an integer or half-integer multiple of h̄.

(e) Likewise, show that the other two components of the angular momentum have form

Ĵ+ = Ĵx + iĴy = h̄e+iφ

[
+
∂

∂θ
+ i cot θ × ∂

∂φ
− qM

h̄c

1∓ cos θ

sin θ

]
,

Ĵ− = Ĵx − iĴy = h̄e−iφ
[
− ∂

∂θ
+ i cot θ × ∂

∂φ
− qM

h̄c

1∓ cos θ

sin θ

]
,

(13)

Now let’s look for the simultaneous eigenstates |n, j,m〉 of the Ĵ2 and Ĵz operators. By

the usual rules of the angular momenta, for each given n and j, m runs from −j to +j by

1. However, in presence of the dyon, the spectrum of j is different from the spectrum of `

for the ordinary orbital angular momentum: Instead of ` = 0, 1, 2, 3, . . ., we now have

j = jmin, jmin + 1, jmin + 2, . . . where jmin =
|qM |
h̄c

. (14)

In particular, for a half-integral qM/h̄c, we have j running over half-integral rather than

integral values.

(f) Use eqs. (12) and (13) to obtain this spectrum of allowed values of j.

Now let’s diagonalize the Hamiltonian (10). As a first step, let’s separate the radial and

the angular directions of the operator ~̂π
2
.

(g) Use the commutation relations (5) through (9) to show that

~̂π
2

= π̂2
r +

1

r̂2

(
~̂
J

2

−
(
qM

c

)2
)

(15)

where

π̂r =
1

2
{n̂i, π̂i} −−−−−−−−−→

coordinate basis
−ih̄

(
∂

∂r
+

1

r

)
. (16)
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(h) Finally, write down the radial Schrödinger equation for a given j and show that for

qQ < 0 the bound state energies are

E(nr, j) = −m(qQ)2

2h̄2 × 1

(nr + λ)2
(17)

where nr is a positive integer 1, 2, 3, . . . while ν is the positive root of

λ(λ+ 1) = j(j + 1) − (qM/h̄c)2. (18)

By comparison, in the absence of the magnetic charge j is ` = 0, 1, 2, 3, . . ., hence λ = `,

and nr + λ = nr + ` is the principle quantum number N .
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