
Renormalization Scheme Dependence

The running couplings such as λ(E) depend not only on the energy scale E, but also

on the specific rules we use to fix the finite parts of the δλ(E) and other counterterms. If

we change those rules — collectively known as the renormalization scheme — then for the

same energy scale E we would get a slightly different running coupling λ′(E) 6= λ(E). The

difference is due to quantum corrections which usually start at one loop, thus

λ′(E) = λ(E) + O(λ2(E)). (1)

Corollary to this scheme-dependence of the running coupling λ(E), the beta-function

β(λ) ≡
dλ(E)

d logE
(2)

also depends on the renormalization scheme, β′(λ′) 6= β(λ). However, this dependence starts

at the three-loop level; the one-loop and two-loop terms in the beta-function are the same in

all renormalization schemes!

Before I prove this statement, let me make it precise. In a theory with a single running

coupling λ(E) (or α(E) = e2(E)/4π, or g2/4π, or whatever), the beta-function is a power

series

β(λ) = b1λ
2 + b2λ

3 + b3λ
4 + · · · (3)

with some constant coefficients b1, b2, b3, . . .; each bℓ arises at the ℓ–loop order of the per-

turbation theory. Now let’s change the renormalization scheme (for the same theory) so the

coupling becomes λ′(E) and the beta-function becomes

β′(λ′) = b′1λ
′2 + b′2λ

′3 + b′3λ
′4 + · · · (4)

— a power series similar to (3), but maybe with different coefficients b′1, b
′

2, b
′

3, . . ..

Theorem: the one-loop and two-loop coefficients are the same in all renormalization schemes,

b′1 = b1 and b′2 = b2, but the three-loop and higher-loop coefficients are scheme dependent,

b′ℓ 6= bℓ for ℓ ≥ 3.
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Proof: Let’s spell out the relation (1) between the couplings λ and λ′ as a power series

λ′(E) = λ(E) + C1 × λ2(E) + C2 × λ3 + · · · (5)

with some constant coefficients C1, C2, . . .. Now consider the inverse couplings 1/λ(E) and

1

λ′(E)
=

1

λ(E)
− C1 + (C2

1 − C2)× λ(E) + (−C3
1 + 2C1C2 − C3)× λ2(E) + · · · . (6)

These inverse couplings depend on energy according to

d

logE

1

λ(E)
=

−1

λ2(E)
×

(

dλ(E)

d logE
= β(λ(E))

)

= −b1 − b2 × λ(E) − b3 × λ2(E) − · · · ,

(7)

and similarly

d

logE

1

λ′(E)
= −b′1 − b′2 × λ′(E) − b′3 × λ′2(E) − · · · . (8)

On the other hand, differentiating both sides of eq. (6) gives us

d

logE

1

λ′(E)
=

d(1/λ′)

dλ
×

(

dλ

d logE
= β(λ)

)

=







−1

λ2(E)
− C1 ×

0

λ(E)
+ (C2

1 − C2)× 1

+ (−C3
1 + 2C1C2 − C3)× 2λ(E) + · · ·






×

×
(

b1 × λ2(E) + b2 × λ3(E) + b3 × λ4(E) + · · ·
)

= −b1 − b2 × λ(E) −
[

b3 − b1(C
2
1 − C2)

]

× λ2(E) − · · ·

= −b1 − b2 × λ′(E) − [b3 − b2C1 − b1(C
2
1 − C2)

]

× λ′2(E) − · · · .

(9)

Comparing this formula to eq. (8) we immediately see that b′1 = b1 and b′2 = b2 but b′3 =

b3 − b2C1 − b1(C
2
1 − C2) 6= b3, and it’s obvious that the higher-order coefficients are also

renormalization scheme dependent, b′4 6= b4, etc. Quod erat demonstrandum.
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A similar theorem applies to theories with multiple couplings gi(E): Write all beta-

functions βi as power series in g1(E), . . . , gn(E) with some numerical coefficients; the co-

efficients of all terms which arise at the one-loop or two-loop orders do not depend on the

choice of the renormalization scheme, but the coefficients of the three-loop and higher-order

terms are scheme-dependent.

Minimal Subtraction

Over the years, field theorists invented all kinds of renormalization schemes. But since

1970’s, the most popular schemes are the Minimal Subtraction (MS) and its close cousins MS,

DR, and DR. Here are the rules for the MS scheme:

1. Use dimensional regularization to control the UV divergences.

Note: this rule is peculiar to the Minimal Subtraction and similar schemes. The other renormalization

schemes do not care what the UV regulator is, you can use whatever regulator you like as long as

it works (i.e., regulates all the UV divergences and does not break symmetries that lead to Ward

identities).

2. Identify the µ parameter of dimensional regularization

d4p

(2π)4
→ µ4−D ×

dDp

(2π)D
(10)

with the energy scale E of the renormalization group. This identification sets the ubiq-

uitous logarithms log(µ2/E2) to zero.

3. In general, the overall UV divergence of some L-loop amplitude is a degree-L polynomial

in 1/ǫ, for example

⊃ 6p× g2L ×

(

AL

ǫL
+

AL−1

ǫL−1
+ · · · +

A1

ǫ
+ a finite function of (p2)

)

(11)

for some constants AL, . . . , A1, and to cancel such a divergence we need an L-loop-order

counterterm

δZL loops = g2L ×

(

AL

ǫL
+

AL−1

ǫL−1
+ · · · +

A1

ǫ
+ A0

)

. (12)

In this counterterm, the coefficients AL, . . . , A1 are completely determined by the UV
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divergence of the L-loop diagrams, but the finite free term A0 is not: its value follows not

from the divergence but from the renormalization scheme we use for the amplitude (11).

In the MS scheme, we do not impose any conditions on amplitudes. Instead, we simply

set A0 = 0. Likewise, the finite parts of all the other counterterms are set to zero.

This is called the Minimal Subtraction because all the counterterms do is to subtract

the pole at ǫ = 0; the finite part of a divergent amplitude is whatever the loop diagrams

produce, the counterterms do not mess with it.

Instead of the original Minimal Subtraction renormalization scheme (MS), people often

use the Modified Minimal Subtraction scheme (MS, pronounced MS-bar). In this scheme, the

L-loop counterterms are degree-L polynomials — without the free term — in

1

ǭ
def
=

1

ǫ
− γE + log(4π) (13)

instead of 1/ǫ. For example

δZL loops = g2L ×

(

AL

ǭL
+

AL−1

ǭL−1
+ · · · +

A1

ǭ
+ 0

)

. (14)

This modification makes the regularized net amplitudes somewhat simpler because it subtracts

the numerical constants that usually accompany the 1/ǫ poles.

There are also DR and DR regularization schemes which are often used in supersymmetric

theories. These schemes work similarly to the MS and MS but use a different ‘flavor’ of dimen-

sional regularization called dimensional reduction: all momenta live in D = 4−2ǫ dimensions,

but the vector fields keep all 4 components. Physically, such a reduced 4D vector field com-

prises one species of a D-dimensional vector plus 2ǫ species of scalars with the same mass and

charge. Unlike the original ’t Hooft’s dimensional regularization, the dimensional reduction

does not break the supersymmetry; apart from that, the difference is usually unimportant.
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Residues, Recursion Relations, and Beta–Functions

In the MS or similar renormalization schemes, the L-loop counterterms generally comprise

poles in 1/ǫ (or 1/ǭ) of orders 1 through L. However, there are recursion relations for all

the higher poles 1/ǫ2, 1/ǫ3, etc., in terms of the lower-degree poles of the lower-loop-order

counterterms. For example, the 1/ǫ2 pole of a 2-loop counterterm can be obtained from the

1/ǫ poles of the 1-loop counterterms without doing any 2-loop calculations. Only the simple

1/ǫ poles have to be calculated the hard way for each loop order: QFT is hard, but not quite

as hard as it could be.

Later in these notes, I’ll derive the recursion relations for the coefficients of the 1/ǫ2,

etc., poles for the counterterms combinations used for calculating the beta-functions. There

are similar recursion relations for the other counterterm combinations, but I leave them as

optional exercise for the students. (In case you have nothing better to do during the summer

break, or if you need them for your own research.) But first, let me write down formulae for

the beta-function themselves in terms of the residues of the 1/ǫ poles only.

Let me start with the λφ4 theory. Let’s define

h(λ) = coefficient of the
1

ǫ
pole of

[

δλ − 2λδZ
]

. (15)

That is, at each loop order, write the δλ − 2λδZ counterterm combination as a polynomial

in 1/ǫ, take the residue — the coefficient of the simple 1/ǫ pole regardless of the higher 1/ǫ2

through 1/ǫL poles, — and sum over the loop orders. (In theory, over all L from 1 to ∞, but

in practice one stops at some finite order.) Then in any dimension D

β(λ;D) = (D − 4)× λ + 2L̂h(λ) (16)

— and in particular, in D = 4 dimensions β(λ) = 2L̂h(λ) — where

L̂ = λ
d

dλ
− 1 (17)

is the operator multiplying an L-loop term in h(λ) by L.
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In a more explicit form, in the MS scheme the L-loop-order counterterm combination

δλ − 2λδZ has general form

δλL loops − 2λδZL loops = λL+1

(

CL,1

ǫ
+ · · · +

CL,L

ǫL

)

(18)

for some numeric constants CL,1, . . . , CL,L. To obtain the beta-function, we disregard all the

higher-pole coefficients CL,2, . . . , CL,L and focus on the residue CL,1 of the simple 1/ǫ pole.

Summing over the loop orders, we have

h(λ) = C1,1λ
2 + C2,1λ

3 + C3,1λ
4 + · · · (19)

and hence in D = 4 dimensions

β(λ;D = 4) = 2C1,1λ
2 + 4C2,1λ

3 + 6C3,1λ
4 + · · · . (20)

Now consider a QFT with several couplings g1, . . . , gN , where each gs is a coefficient of a

Lagrangian operator Ôs. Each operator has canonical energy dimension dim[Ôs] = ∆s — i.e.,

it scales with energy as Ôs ∝ E∆s, — so the corresponding coupling has energy dimension

Js = D −∆s and its dimensionless strength at energy scale E = µ is

ĝs(µ) = gs(µ)/µ
Js. (21)

For each such dimensionless coupling ĝs, let’s define

hs(ĝ1, . . . , ĝN )
def
= coefficient of the

1

ǫ
pole of



δgs −
gs
2

×
fields∈Ôs
∑

i

ns(i)δ
Z
i



 (22)

where ns(i) is the power of the field#i in the operator Ôs. (For example, in the λφ4 theory,

nλ(φ) = 4.) Then in any spacetime dimension D,

dĝs
d logµ

= β̂s(ĝ1, . . . , ĝs;D) = −Js(D)× ĝs + 2L̂hs(g1, . . . , gs). (23)
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For example, consider QED. At high energies, we treat the electron’s mass m as a small

coupling between the left-handed and the right-handed electron fields. Thus altogether, we

have two couplings: the electric charge e(µ) and the mass m(µ), of respective canonical

dimensions Je =
1
2(4−D) = ǫ and Jm = 1. The corresponding h functions are

he(ê, m̂) = Residue
(1/ǫ) pole

[

eδ1 −
e

2

(

2δ2 + δ3
)]

= Residue
(1/ǫ) pole

[

−
e

2
δ3
]

(24)

— where the second equality follows from the Ward identity δ1 = δ2, — and

hm(ê, m̂) = Residue
(1/ǫ) pole

[

δm −
m

2
× 2δ2

]

. (25)

At the one-loop order, the relevant counterterms are

δ31 loop = −
e2

12π2
×

1

ǫ
, δ21 loop = −ξ ×

e2

16π2
×

1

ǫ
, δm1 loop = −(3 + ξ)×

me2

16π2
×

1

ǫ
, (26)

where ξ is the gauge-fixing parameter. Consequently,

he = −
e

2
×

(

−
e2

12π2
+ O(e4)

)

= +
e3

24π2
+ O(e5),

hm = −(3 + ξ)×
me2

16π2
+ m× ξ ×

e2

16π2
+ O(me4)

= −
3e2m

16π2
+ O(e4m),

(27)

and therefore in D = 4− 2ǫ dimensions

β̂e = −ǫ× ê + 2×
ê3

24π2
+ O(ê5), (28)

β̂m = −m̂ − 2×
3ê2m̂

16π2
+ O(m̂ê4). (29)

Note however that these are beta-functions for the dimensional coupling strengths ê = e/µǫ

and m̂ = m/µ. For the electric charge e and the electron mass m themselves we have

de

d logµ
= βe =

e3

12π2
+ O(e5), (30)

dm

d logµ
= βm = −m×

6e2

16π2
+ O(me4). (31)
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Deriving the beta-functions and the recursion relations.

In this section we prove the formulae (16) and (23) for the beta-functions and also derive

the recursion relations for the higher-pole coefficients. For simplicity, let us start with the λφ4

theory.

As explained in class, the renormalized coupling λ(µ) is related to the bare coupling λb

according to

λb =
λ(µ) + δλ(µ)

(1 + δZ(µ))2
(32)

In the MS scheme, the counterterms are given by power series

δλ =

∞
∑

L=1

λL+1 ×

L
∑

k=1

AL,k

ǫk
,

δZ =

∞
∑

L=1

λL ×

L
∑

k=1

BL,k

ǫk

(33)

with some constant coefficients AL,k and BL,k. In the perturbative series like (33) we should

treat the coupling λ as infinitesimally small, so small that even λ/ǫ is small despite the eventual

ǫ → 0 limit. In other words, we should take the λ → 0 limit before taking ǫ to zero. In this

limit, the right hand side of eq. (32) also becomes a power series

λ(µ) + δλ(µ)

(1 + δZ(µ))2
= λ(µ) +

∞
∑

L=1

λL+1(µ)×

L
∑

k=1

CL,k

ǫk
(34)

where the coefficients CL,k are given by polynomials in AL′,k′ and BL′,k′ with L′ ≤ L and

k′ ≤ k,

C1,1 = A1,1−2B1,1 , C2,1 = A2,1−2B1,1 , C2,2 = A22−A11B11+3B2
11−2B2,2 , . . . .

(35)

In particular, for k = 1 and any L,

CL,1 = AL,1 − 2BL,1 . (36)
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Proof: First, expand the RHS of eq. (32) in powers of the counterterms,

λ+ δλ

(1 + δZ)2
= λ +

(

δλ − 2λδZ
)

+
(

3λ(δZ)2 − 2δλδZ
)

+ O(δ3). (37)

In the MS scheme, the counterterms do not have finite pieces, so any product of N > 1 coun-

terterms begins with a 1/ǫN divergence, so its expansion in powers of λ and 1/ǫ contributes

only to the CL,k with k ≥ N . For k = 1, the CL,k coefficients come only from expanding the

linear δλ − 2λδZ term in eq. (37), hence eq. (36).

Now let’s re-organize the series (34) by summing over the loop order L before summing

over the pole degree k, thus

λ(µ) + δλ(µ)

(1 + δZ(µ))2
= λ(µ) +

∞
∑

k=1

fk(λ(µ))

ǫk
(38)

where

fk(λ)
def
=

∞
∑

L=k

CL,kλ
L+1. (39)

In particular, thanks to eq. (36),

f1(λ) =
∞
∑

L=1

(AL,1 − 2BL,1)λ
L+1 = Residue

(1/ǫ) pole

[

δλ − 2λδZ
]

(40)

— which is exactly the h(λ) function we have earlier defined in eq. (15). In a moment, we

shall see that all the higher-pole coefficients f2(λ), f3(λ), etc., are completely determined by

the simple-pole coefficient f1(λ), and there is a simple formula (16) for the beta-function β(λ)

in terms of just the h(λ) = f1(λ).

The series (38) spells out the right hand side of eq. (32) for any dimension D = 4− 2ǫ 6=

4. Now let’s take a closer look at the left hand side for D 6= 4. The bare coupling λb is

dimensionless in D = 4 spacetime dimensions, but in other spacetime dimensions such as

D = 4− 2ǫ the bare coupling has a non-zero energy dimension

dim[λb] = J = D − 4 dim[Φ] = D − 4×
D − 2

2
= 4−D = 2ǫ. (41)

The running coupling λ(µ) suffers from a similar problem, but we can make it dimensionless for

anyD 6= 4 by rescaling λ(µ) → λ̂(µ)×µ2ǫ for a dimensionless λ̂. In fact, such rescaling happens
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automatically when we include the µ2ǫ factors in the dimensionally regularized momentum

integrals (10), so in eq. (38) λ(µ) is actually the dimensionless λ̂(µ).

But when we apply a similar rescaling to the bare coupling λb, we make the coupling

dimensionless but µ-dependent. In class, we have derived the beta-function from the fact that

λb was divergent but E-independent, but now that we work in D 6= 4 dimensions and identify

E = µ, we should use

λb(µ) =
divergent constant

µ2ǫ
(42)

on the left hand side of eq. (32). The right hand side of eq. (32) is spelled out in eq. (38);

combining all these formulae together, we arrive at

divergent constant

µ2ǫ
= λb =

λ̂(µ) + δλ(µ)

(1 + δZ(µ))2
= λ̂(µ) +

∞
∑

k=1

fk(λ̂(µ))

ǫk
. (43)

Now let’s differentiate both sides of eq. (43) with respect to logµ. The right hand side

depends on µ only via the λ̂(µ), hence

d

d logµ

(

λ̂(µ) +

∞
∑

k=1

fk(λ̂(µ))

ǫk

)

=
dλ̂

d logµ
×

d

dλ̂

(

· · ·
)

= β̂(λ̂(µ))×

(

1 +

∞
∑

k=1

f ′k(λ̂(µ))

ǫk

)

(44)

where f ′k(λ̂) is dfk/dλ̂. On the left hand side of eq. (43), the µ-dependence is explicit but we

don’t know the constant coefficient. Instead, we may obtain it from the eq. (43) itself, thus

d

d logµ

(

const

µ2ǫ

)

= −2ǫ×
same const

µ2ǫ
= −2ǫ×

(

λ̂(µ) +
∞
∑

k=1

fk(λ̂(µ))

ǫk

)

(45)

and therefore

−2ǫλ̂ − 2

∞
∑

k=1

fk(λ̂)

ǫk−1
= β̂(λ̂)×

(

1 +

∞
∑

k=1

f ′k(λ̂)

ǫk

)

. (46)

At this point, let’s treat both sides of eq. (46) as Laurent power series
⋆
in ǫ. On the right

hand side, the beta-function β̂(λ̂) depends on the spacetime dimension, so we should treat it

⋆ Unlike the Taylor series which sums up only non-negative powers of some variable, the Laurent series
includes both positive and negative powers. A function f(z) that’s singular at z = 0 but is analytic in
some ring r1 < |z| < r2 in complex z plane can be expanded into a Laurent series in both positive and
negative powers of z.
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as β̂(λ̂, ǫ) and expand

β̂(λ̂, ǫ) = β̂0(λ̂) + ǫ× β̂1(λ̂) + ǫ2 × β̂2(λ̂) + · · · . (47)

Note that only non-negative powers of ǫ appear in this expansion because the beta-function

does not have a singularity at D = 4. Thus, eq. (43) becomes

−2ǫλ̂ − 2

∞
∑

k=1

fk(λ̂)

ǫk−1
=

(

∞
∑

n=0

β̂n(λ̂)× ǫ+n

)

×

(

1 +

∞
∑

k=1

f ′k(λ̂)

ǫk

)

, (48)

and the coefficients of similar powers of ǫ should be equal on both sides of this equation. In

particular, since the left hand side does not contain any powers of ǫ greater than +1, the right

hand side should not contain them either, and this can happen only if the expansion (47) for

the beta-functions stops after the linear term,

β̂(λ̂, ǫ) = β̂0(λ̂) + ǫ× β̂1(λ̂) + nothing else. (49)

This fact greatly simplifies eq. (48) — it becomes

−2ǫλ̂ − 2f1 − 2

∞
∑

k=2

fk
ǫk−1

= ǫβ̂1 + β̂0 + β̂1 × f ′1 +

∞
∑

k=2

β̂1f
′

k

ǫk−1
+

∞
∑

k=1

β̂0f
′

k

ǫk
, (50)

and now it’s easy to compare similar powers of ǫ on both sides. Starting with ǫ+1 and going

down, we have

β̂1(λ̂) = −2λ̂, exactly, (51)

β̂0(λ̂) = −2f1(λ̂) − β1(λ̂)× f ′1(λ̂), (52)

−β̂1(λ̂)× f ′2(λ̂) − 2f2(λ̂) = β̂0(λ̂)× f1(λ̂), (53)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−β̂1(λ̂)× f ′k(λ̂) − 2fk(λ̂) = β0(λ̂)× fk−1(λ̂). (54)

These formulae give us everything we want to know in terms of the f1(λ) function, which

summarizes the simple poles in the δλ and δZ counterterms according to eq. (40). In particular,

eqs. (51) and (52) give us the beta-function in any spacetime dimension D = 4− 2ǫ,

β̂(λ̂) = (D − 4)× λ̂ +

(

2λ̂
d

dλ̂
− 2

)

f1(λ̂), (55)

— which proves eq. (16).
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Moreover, eqs. (53)–(54) give us the recursion relations for the fk(λ) functions for the

higher 1/ǫk poles with k ≥ 2. Indeed, plugging in β̂1 = −2λ̂ into eq. (54) leads to

∀k ≥ 2 :

(

2λ̂
d

dλ̂
− 2

)

fk(λ̂) = β̂0(λ̂)×
dfk−1(λ̂)

dλ̂
(56)

These differential equations are subject to initial conditions

fk = O(λk+1) for λ → 0. (57)

Once we know the f1(λ̂) = h(λ̂) and hence the beta-function β̂0(λ̂), we may easily solve

eqs. (56) and (57) for the f2(λ̂), then solve similar equations for the f3(λ̂), then for the f4(λ̂),

etc., etc.

Thus, all the fk(λ) functions for k ≥ 2 are completely determined by the f1(λ) function.

Or in terms of the double series

λ̂(µ) + δλ(µ)

(1 + δZ(µ))2
= λ̂(µ) +

∞
∑

L=1

λ̂L+1(µ)×

L
∑

k=1

CL,k

ǫk
, (34)

the CL,1 coefficients of the simple 1/ǫ pole at each loop order L completely determine all the

higher poles 1/ǫ2, 1/ǫ3, etc..

⋆ ⋆ ⋆

Now consider a generic QFT with several couplings gs(µ), s = 1, . . . , n. Similar to the

λ̂(µ), we make all gs(µ) dimensionless by multiplying them by appropriate powers of µ. Then

for each coupling we have an equation similar to eq. (43):

gs,bare =
const

µJs

=
ĝs(µ) + δgs (µ)

fields∈Ôs
∏

i

[

1 + δZi (µ)
]ns(i)/2

= ĝs(µ) +

∞
∑

k=1

1

ǫk
f
(k)
s (ĝ1(µ), . . . , ĝn(µ)). (58)

On the right hand side here, the f1(ĝ1, . . . , ĝn) function follows from the simple 1/ǫ poles in

the counterterms, specifically

f
(1)
s (g1, . . . , gn) = Residue

(1/ǫ) pole



δgs −
ĝs
2

×

fields∈Ôs
∑

i

ns(i)× δZi



 (59)

— which is exactly the hs(ĝ1, . . . , ĝn) function we have defined earlier in eq. (22), — while the

other f
(k>1)
s (ĝ1, . . . , ĝn) functions follow from the higher-order poles in the counterterms. The
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specific formulae for the f
(2)
s , f

(3)
s , etc., in terms of those higher poles are rather complicated,

but fortunately we do not need them to calculate the beta functions.

On the left hand side of eq. (58), Js = dim[gs] is the energy dimension of the bare coupling

gs in D = 4 − 2ǫ spacetime dimensions. In general, different couplings have different energy

dimensions, but fortunately they are always linear functions of spacetime dimension D and

hence of the ǫ, thus

Js(ǫ) = J
(0)
s + Ks × ǫ, exactly. (60)

For the renormalizable couplings J
(0)
s = 0 while Ks = valence(vertex) − 2: for the gauge and

Yukawa couplings Ks = 3− 2 = 1 while for the 4–scalar coupling Ks = 2.

Similar to eq. (49), linear dependence of the dimensionalities Js(ǫ) on ǫ makes all the beta-

functions β̂s(ĝ1, . . . , ĝn; ǫ) exactly linear with respect to epsilon, which helps us to calculate

them in terms of the f
(1)
s functions. Indeed, taking the derivatives of both sides of eq. (58)

with respect to the log µ, we obtain

−(J
(0)
s + ǫKs)×

(

ĝs +

∞
∑

k=1

1

ǫk
× f

(k)
s (ĝ1, . . . , ĝn)

)

= βs(ĝ1, . . . , ĝn; ǫ) +

n
∑

p=1

βp(ĝ1, . . . , ĝn; ǫ)×

∞
∑

k=1

1

ǫk
×

∂f
(k)
s (g1, . . . , gn)

∂gp
.

(61)

And now we treat both sides as Laurent series in powers of ǫ and compare coefficients of

similar powers on both sides. Since the left hand side does not include any powers greater

than ǫ+1, the right hand side should not have them either, thus

β̂s(ĝ1, . . . , ĝn; ǫ) = β̂
(0)
s (ĝ1, . . . , ĝn) + ǫ× β̂

(1)
s (ĝ1, . . . , ĝn), exactly. (62)

Consequently, matching powers of ǫ+1, ǫ0, ǫ−1, . . ., on the two sides of eq. (61),

−Ks × ĝs = β̂
(1)
s , (63)

−J
(0)
s × ĝs − Ks × f

(1)
s = β̂

(0)
s +

∑

p

β̂
(1)
p ×

∂f
(1)
s

∂ĝp
, (64)
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−J
(0)
s × f

(1)
s − Ks × f

(2)
s =

∑

p

[

β
(1)
p ×

∂f
(2)
s

∂ĝp
+ β̂

(0)
p ×

∂f
(1)
s

∂ĝp

]

, (65)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−J
(0)
s × f

(k)
s − Ks × f

(k+1)
s =

∑

p

[

β
(1)
p ×

∂f
(k+1)
s

∂ĝp
+ β

(0)
p ×

∂f
(k)
s

∂ĝp

]

. (66)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first two equations here — (63) and (64) — give us the exact formulae for all the β

functions in terms of the

f
(1)
s (ĝ1, . . . , ĝn) ≡ hs(ĝ1, . . . , ĝn) = Residue

(1/ǫ) pole



δgs −
ĝs
2

×

fields∈Ôs
∑

i

ns(i)× δZi



 , (59)

namely

β̂s(ĝ1, . . . , ĝn;D) = −Js(D)× ĝs +





n
∑

p=1

Kpĝp
∂

∂ĝp
− Ks



 f
(1)
s (ĝ1, . . . , ĝn). (67)

When all the couplings are renormalizable, this formula simplifies to

β̂s(ĝ1, . . . , ĝn;D) = −Js(D)× ĝs + 2L̂ f
(1)
s (ĝ1, . . . , ĝn) (23)

where L̂ is the operator counting the number of loops giving rise to each term in the f
(1)
s . As

promised, in the MS regularization scheme, the simple 1/ǫ poles of the appropriate countert-

erms completely determine all the beta-functions of the theory. As to the coefficients f
(k>1)
s

of the higher-order poles 1/ǫk in the same counterterms, they follow from the simple pole

coefficients via the recursion relations (66), or in a more compact form,





n
∑

p=1

Kpĝp
∂

∂ĝp
− Ks



 f
(k+1)
s (ĝ1, . . . , ĝn) =

(

∑

p

β
(0)
p ×

∂

∂ĝp
− J0

s

)

f
(k)
s (ĝ1, . . . , ĝn). (68)

When all the couplings are renormalizable, this formula becomes even simpler:

2L̂f
(k+1)
s (ĝ1, . . . , ĝn) =

(

∑

p

β
(0)
p (ĝ1, . . . , ĝn)×

∂

∂ĝp

)

f
(k)
s (ĝ1, . . . , ĝn). (69)
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