
NON LINEAR SIGMA MODELS

Ordinary scalar, vector, spinor, etc., fields are maps from the Minkowski spacetime to

some linear spaces such as real or complex numbers, vectors, spinors, etc.. But a generic

non-linear sigma model is a map from the Minkowski spacetime to a non-linear target space,

namely a curved Riemannian manifold. In terms of the target space’s coordinates φa (a =

1, . . . , N) and its metric

ds2 = gab(φ) dφa dφb, (1)

the non-linear sigma model comprises N scalar fields φa(x) with the purely-kinetic La-

grangian

L = 1
2g
ab(φ)× ∂µφa ∂µφb. (2)

Note that the specific fields φa and the specific metric gab(φ) depends on a particular co-

ordinate system for the target space. For a different coordinate system, the NLΣM would

have different fields φ′a related to the φb in some non-linear fashion and a correspondingly

different metric such that

g′ab(φ′)× dφ′a dφ′b = gab(φ)× dφa dφb. (3)

The non-linear sigma models are renormalizable in 1 + 1 dimensions but not in higher

dimensions such as 3 + 1. Consequently, loop corrections generate all kinds extra terms in

the Lagrangian, especially the higher-derivative terms such as

∆L = 1
8h

abcd(φ)× ∂µφa ∂µφb ∂νφx ∂νφd + · · · (4)

Because of such higher-derivative terms, an NLΣM becomes useless at high energies. On

the other hand, the higher-derivative terms become irrelevantly small at low energies, so an

NLΣM can be a good low-energy effective theory despite its non-renormalizability.

Besides the higher-derivative terms, the loop corrections may also generate the no-

derivative terms which together would comprise a scalar potential V (φ). If the target space of

the NLΣM happens to be a homogeneous space of some symmetry — i.e., if all points of the
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target space are related by symmetries, — then that symmetry would lead to V (φ) = const,

so the potential can be ignored. Otherwise, we would get a non-constant V (φ) which at

low energies would produce stronger interactions than the curvature of the metric gab(φ).

Consequently, the low-energy effective theory would be dominated by the potential rather

than by the NLΣM.

For this reason, the non-supersymmetric non-linear sigma models usually involve homo-

geneous target spaces.
?

Of particular importance are target spaces of the type G/H where

G is the manifold of some continuous symmetry group and H is a subgroup of G. Such

target spaces often appear in the context of spontaneous symmetry breaking from G — the

symmetry group of the Lagrangian — to H, the unbroken symmetry group of the vacuum.

In these notes I would like to focus on the spontaneous breakdown of the chiral symmetry,

SU(N)L × SU(N)R → SU(N)V , especially for N = 2 or N = 3, hence the NLΣM whose

target space is the SU(N) group manifold. Instead of using an explicit coordinate systems

for such manifolds, let me use the non-linear, SU(N)–matrix valued field W (x):

• For each x, the W (x) is a N ×N unitary matrix of determinant = 1.

In terms of this matrix-value field, the NLΣM Lagrangian is simply

L = F 2 tr
(
∂µW

† ∂µW
)

(5)

for some constant F 2; in 4D, F 2 has dimension mass2. The Lagrangian (5) has a global

SU(N)L × SU(N)R symmetry which acts as

W ′(x) = ULW (x)U †R, W ′†(x) = URW
†(x)U †L (6)

for any two independent SU(N) matrices UL and UR. However, any vacuum expectation

value 〈W 〉 ∈ SU(N) spontaneously breaks the symmetry to a single SU(N) by imposing a

? Supersymmetry severely restricts quantum correction to the scalar potential, and usually leads to
V (φ) = 0 over the entire target space of an NLΣM. Consequently, supersymmetric NLΣM’s with
non-homogeneous target spaces are OK.
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relation between UL and UR. Indeed, to keep

〈W 〉′ = UL 〈W 〉U
†
R = 〈W 〉 (7)

we would need

UR = 〈W 〉† UL 〈W 〉 . (8)

In particular, the simplest VEV 〈W 〉 = 1N×N remains invariant only for UR = UL, thus

spontaneous symmetry breaking SU(N)L × SU(N)R → SU(N)V .

Now consider the symmetry currents. In general, for any continuous global internal

symmetry with infinitesimal action δφa(x) = εQφa(x) for some operator Q, the conserved

current obtains from the Noether theorem as follows: For x-independent ε, δL = 0 by the

symmetry, but if we make ε x-dependent, we generally get

δL = ∂µε× Jµ (9)

for some current Jµ(φ, ∂φ). By Noether symmetry, Jµ is precisely the conserved current of

the symmetry.

Now let’s apply this rule to the chiral symmetry of the NLΣM. The infinitesimal

SU(N)L × SU(N)R symmetries act on the W and W † fields as

δW (x) = i
2 ε

a
Lλ

a×W (x) +W (x)×−i2 εaRλ
a, δW †(x) = i

2 ε
a
Rλ

a×W †(x) +W †(x)×−i2 εaLλ
a,

(10)

where λa are the Gell-Mann matrices of the SU(N). (Or the Pauli matrices for N = 2.)

Consequently, for x-dependent εaL and εaR,

δ∂µW = i
2 (∂µε

a
L)λaW + i

2 ε
a
Lλ

a ∂µW − i
2 ε

a
R (∂µW )λa − i

2 (∂µε
a
R)Wλa,

δ∂µW
† = i

2 (∂µε
a
R)λaW † + i

2 ε
a
Rλ

a ∂µW
† − i

2 ε
a
L (∂µW

†)λa − i
2 (∂µε

a
L)W †λa,

(11)

and therefore

δL =
iF 2

2
(∂µε

a
L)× tr

(
−(W †λa)× ∂µW + (∂µW †)× (λaW )

)
+

iF 2

2
(∂µε

a
R)× tr

(
+(λaW †)× ∂µW − (∂µW †)× (Wλa)

)
.

(12)

3



In terms of the symmetry currents, this means

Jµ,aL =
iF 2

2
tr
(
−(W †λa)× ∂µW + (∂µW †)× (λaW )

)
= −iF

2

2
tr
(
W †λa × ∂µW +

(
−∂µW † = +W †(∂µW )W †

)
× λaW

)
= −iF

2

2
tr
(
W †λa × ∂µW + (∂µW )×W †λa

)
= −iF

2

2
× 2 tr

(
λa × (∂µW )W †

)
,

(13)

and likewise

Jµ,aR = +
iF 2

2
× 2 tr

(
λa ×W †(∂µW )

)
. (14)

Or in terms of the vector and the axial currents,

Jµ,aV = 1
2J

µ,a
R + 1

2J
µ,a
L =

iF 2

2
tr
(
λa ×

[
W †, ∂µW

])
, (15)

Jµ,aA = 1
2J

µ,a
R − 1

2J
µ,a
L =

iF 2

2
tr
(
λa ×

{
W †, ∂µW

})
. (16)

In particular, in the vicinity of the 〈W 〉 = 1 vacuum state where

W (x) = 1 +
i

2F
πa(x)λa + O(π2/F 2), (17)

the currents become

(vector) Jaµ = −fabc(∂µπb)πc + O(π3/F ), (18)

(axial) Jaµ5 = −F∂µπa + O(π2). (19)

Note the linear (in the Goldstone fields πa) term in the axial current. Thanks to this terms

the current operator can create the Goldstone bosons from the vacuum or annihilate the

Goldstone bosons:

Ĵaµ5 |vac〉 = −iFpµ |πa〉 , Ĵaµ5 |πb〉 = iFpµδ
ab |vac〉 + other states. (20)

When the NLΣM is used to model the SU(2)×SU(2)→ SU(2) chiral symmetry breaking in

QCD, the Goldstone bosons πa are identified as pions, and the F constant as fπ ≈ 93 MeV,
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the pion decay constant. This name follows from the fπ governing the amplitude of the weak

decay of a charged pion into a muon and an (anti)neutrino, π+ → µ+ +νµ or π− → µ−+ ν̄µ.

You should calculate this decay amplitude — and hence the decay rate — as a part of your

next homework set#23.

NLΣM in QCD Context

Let’s see how the NLΣM of chiral symmetry breaking emerges from QCD. For simplicity,

let’s start with QCD with Nf exactly massless quark flavors,

L = −1
4F

a
µνF

µν a + Ψiα(i6D)ijΨ
jα (21)

where indices i, j, . . . denote quark colors while α, β, . . . denote their flavors. The theory has

exact SU(Nf )L × SU(Nf )R chiral symmetry which acts as

Ψiα
L =

1− γ5

2
Ψiα 7→ (UL)αβΨiβ

L , Ψiα
R =

1 + γ5

2
Ψiα 7→ (UR)αβΨiβ

R , (22)

for independent SU(Nf ) matrices UL and UR. However, the non-perturbative dynamics of

low-energy QCD spontaneously breaks this chiral symmetry down to the SU(Nf )V spanned

by UL = UR.

The order parameter of this spontaneous symmetry breaking is non-zero vacuum expec-

tation value of the scalar quark-antiquark bilinear
〈
ΨΨ
〉
. In StatMech terms, we may think

of this VEV as the Bose–Einstein condensate of scalar mesons made from quark-antiquark

pairs. This condensate breaks the chiral symmetry because the scalars are made from a

quark and an antiquark of opposite chiralities; in terms of the Weyl fermions ΨL and ΨR,

ΨΨ = ΨRΨL + ΨLΨR , (23)

so the
〈
ΨΨ
〉

condensate connects the left-handed and the right-handed fermionic fields to

each other.

Let’s take a closer look at the color and the flavor indices of the quark-antiquark con-

densate. Since the SU(Nc) gauge symmetry of QCD is NOT spontaneously broken, the
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condensate must be color singlet, so the quark and the antiquark in the condensate must

have matching colors. On the other hand, their flavor indices do not have to match, so in

general we have 〈
ΨR,iαΨjβ

L

〉
=

δji
Nc
× T βα (24)

for some complex Nf ×Nf matrix T βα, and by Hermitian conjugation of the fields and their

VEVs, 〈
ΨL,jβΨiα

R

〉
=

δij
Nc
× (T †)αβ . (25)

Thus, instead of a single condensate, we actually have a whole Nf ×Nf complex matrix of

condensates.

In excited states of QCD, the quark-antiquark condensate may fluctuate rather than

being stuck to its vacuum value. The simplest way to describe such fluctuations — some of

which may be rather long-ranged — is to promote the T βα matrix to a matrix-valued complex

field T βα(x) and to write down an effective Lagrangian for this field,

Leff = −V (T, T †) + Lkinetic(∂µT, ∂µT
†) + Lhigher

derivatives . (26)

All parameters of this effective Lagrangian ultimately follow from QCD, but there is no

perturbation theory for them, so until we have a better non-perturbative understanding of

QCD we may only guess at those parameters or fit them to the experimental data. However,

we know that the effective Lagrangian (26) must be invariant under all exact symmetries of

QCD, even if they happen to be spontaneously broken.

In particular, consider the chiral SU(N)L × SU(N)R symmetries of QCD under which

the condensate matrix T transforms as

T βα =
〈

ΨR,iαΨiβ
L

〉
↓

T ′βα =
〈

Ψ
′
R,iαΨ′iβL

〉
=
〈

ΨR,iγ(U †R)γα × (UL)βδΨ
iδ
L

〉
= (UL)βδ

〈
ΨR,iγΨiδ

L

〉
(U †R)γα = (UL)βδ T

δ
γ (U †R)γα ,

(27)
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or in matrix language

T ′ = UL × T × U
†
R. (28)

Using this symmetry, any complex T matrix can be brought to the form

T ′ = UL × T × U
†
R = eiθ ×D (29)

where θ = (1/Nf ) arg det(T ) and D is a real diagonal matrix made from the eigenvalues

of T †T , or rather from the square roots of those eigenvalues. Consequently, the effective

potential V (T, T †) for the quark-antiquark condensate must have form

V (T, T †) = function of
(
eigenvalues of T †T and arg det(T )

)
. (30)

We do not know the specific form of this function. However, judging by the phenomenology

of the spontaneous chiral symmetry breaking in real life, we presume that the minimum of

this function obtains when

all eigenvalues of T †T are equal to some positive constant C2 = O(Λ6
QCD)

and arg det(T ) = 0. (31)

Thus, the effective potential has minima for T such that

for some UL, UR ∈ SU(Nf ), ULTU
†
R = C × 1Nf×Nf

, (32)

and hence

T βα = C ×W β
α for an SU(Nf ) matrix W β

α . (33)

Thanks to the chiral symmetry, the minima for all SU(Nf ) matrices W are exactly degen-

erate, and as we saw earlier, any 〈T 〉 = C ×W spontaneously breaks the chiral symmetry

down to the vector SU(Nf ).
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The fluctuations T (x)− 〈T 〉 of the quark-antiquark condensate give rise to 2N2
f species

of scalar particles, or rather scalar and pseudoscalar particles since the chiral symmetry

does not commute with parity. Specifically, there are N2
f − 1 massless Goldstone bosons πa

corresponding to fluctuations of the form T (t) = C × W (x), while the remaining N2 + 1

particles are massive. In terms of their SU(Nf )V and parity quantum numbers:

• The Goldstone bosons are pseudoscalar and form the adjoint multiplet of the SU(Nf )V .

For Nf = 2 these Goldstone bosons approximate the pions.

∗ One massive particle is also pseudoscalar, but it’s a singlet of SU(Nf )V . For Nf = 2

this particle may be identified as the η meson with real-life mass Mη ≈ 550 MeV.

∗ The rest of the massive particles are scalars (positive parity); they form an adjoint +

singlet multiplet of the SU(Nf ). For Nf = 2, the scalar isosinglet can be identified

with the broad resonance σ centered at 500 MeV, while the scalar isotriplet is harder

to identify with real-life particles. Perhaps it’s the lightest isotriplet of scalar mesons

f0(980) with mass of 980 MeV.

At low energies / long distances, only the massless particles — the Goldstone bosons

— become excited, so the effective field theory for those particles can be described in terms

of the condensate fields T βα(x) limited to their Goldstone modes T βα(x) = C ×W β
α(x) for

W (x) ∈ SU(Nf ). For such modes, the potential V (T, T †) is constant, the kinetic term in

the effective Lagrangian is restricted by chiral symmetries to

Lkin = const× tr
(
∂µT ∂

µT †) = F 2 tr
(
∂µW ∂µW †), (34)

so altogether

Leff = F 2 tr
(
∂µW ∂µW †) + higher derivative terms. (35)

But the higher derivative terms decouple in the low-energy limit, so we are left with just the

kinetic term of NLΣM.

And now we see how the NLΣM of the spontaneous chiral symmetry breaking emerges

from QCD.
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Mass Perturbation

Thus far, we have focused on QCD with exactly massless light flavors. Now let’s consider

the real life in which the light quarks have non-zero albeit small masses, thus

LQCD = Lmassless + Lmass (36)

for

Lmass =
flavors∑
α

mαΨiαΨiα. (37)

Let’s promote the array of quark masses to a diagonal mass matrix

mα
β = mαδ

α
β , (38)

so we may rewrite the mass terms in QCD Lagrangian as

Lmass = mα
βΨR,iαΨiβ

L + (m†)βαΨL,iβΨiα
R . (39)

The mass term is NOT invariant under the chiral symmetry SU(Nf )L×SU(Nf )R, but as

long as the quark masses are much smaller then the energy scale of the QCD non-perturbative

effects, we my still use the SU(Nf )L×SU(Nf )R, as an approximate symmetry of the theory.

Specifically, let’s use the mass term (39) as a small perturbation to the rest of QCD.
?

Thus,

the unperturbed theory has exact SU(Nf )L×SU(Nf )R chiral symmetry, and only the small

perturbation by the quark masses breaks this symmetry.

By the usual rules of perturbation theory, the first-order effect of a small perturbation

∆Ĥ is limited to its diagonal matrix elements or off-diagonal elements between degenerate

? This perturbation has nothing to do with the Feynman perturbation theory in αs. We are already
in the deeply non-perturbative regime WRT that. Instead our ‘unperturbed’ theory is massless QCD
in all its glory, with all the non-perturbative effects such as confinement and the spontaneous chiral
symmetry breakdown already included. And then we add small quark masses as small perturbations
on top of that.
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or nearly-degenerate states of the un-perturbed theory. In QFT terms, this means the first

order effect of small quark masses on the effective low-energy Lagrangian is

∆Leff = 〈Lmass〉 (40)

where the VEVs are taken between the states of the un-perturbed (i.e., massless) QCD. In

particular, for the low-energy theory of the quark-antiquark condensates and their fluctua-

tions,

∆Leff = 〈Lmass〉 = mα
β ×

〈
ΨR,iαΨiβ

L

〉
+ (m†)βα

〈
ΨL,iβΨiα

R

〉
= mα

β × T βα + (m†)βα × (T †)αβ

= tr(mT ) + tr(m†T †).

(41)

And when we further restrict our analysis to the otherwise massless Goldstone modes of the

chiral symmetry breaking,

T (x) = C ×W (x) for C =
〈
ψψ
〉

= O(Λ3
QCD) and W (x) ∈ SU(Nf ), (42)

the first-order mass perturbation (41) becomes simply

∆Leff =
〈
ψψ
〉
× tr(mW +m†W †). (43)

Thus, the effective low-energy theory becomes the NLΣM with a small potential term for

the W field, namely

Leff = F 2 tr(∂µW
† ∂µW ) − V for V = −

〈
ψψ
〉
× tr(mW +m†W †). (44)

The potential (44) spoils the degeneracy between the vacuum states with different W ∈
SU(Nf ). In the basis for the quark fields where the mass matrix m is diagonal, real, and

positive, the potential (44) has a unique minimum, namely 〈W 〉 = 1. Consequently, there is

a unique vacuum state, and all fluctuations around this vacuum cost positive energy, so all

the particles are massive. And that’s why in real life, the π mesons are not exactly massless

but merely light compared to the other mesons.
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To calculate the pion mass — and also the masses of other light pseudoscalar mesons for

Nf = 3 — we expand the non-linear W field around 〈W 〉 = 1,

W (x) = exp

(
iπa(x)λa

2F

)
= 1 +

i

2F
πa(x)λa − 1

16F 2
πa(x)πb(x) {λa, λb} + O(π3/F 3).

(45)

Consequently,

W + W † = 2 − 1

8F 2
πaπb × {λa, λb} + O(π4/F 4), (46)

and therefore the potential V for the πa fields

V (π) = −
〈
ψψ
〉
×tr

(
m(W+W †)

)
= const +

〈
ψψ
〉

8F 2
×tr(m{λa, λb})×πaπb + O(π4). (47)

In particular, we get the mass matrix for the pions (and similar pseudoscalars for Nf = 3),

namely

V = 1
2(M2)ab × πaπb (48)

for

(M2)ab =

〈
ψψ
〉

4F 2
× tr

(
m{λa, λb}

)
. (49)

In particular, for the 2-flavor NLΣM, we get

{λa, λb} → {τa, τ b} = 2δab × 12×2 , (50)

tr
(
m{λa, λb}

)
= 2δab × tr(m) = 2δab × (mu +md), (51)

and therefore equal masses for all 3 species of pions, namely

M2
π =

〈
ψψ
〉

2F 2
π
× (mu +md) (52)

In real life, the charged pions π± are slightly heavier then the neutral pion π0, — M(π±) ≈
139 MeV while M(π0) ≈ 134 MeV — but the difference stems from the electromagnetic
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effects rather than the quark masses. Indeed, the electromagnetism breaks the isospin sym-

metry SU(2) down to U(1), and likewise breaks the chiral isospin SU(2) × SU(2) down

to U(1) × U(1), and that produces an extra chiral symmetry breaking besides the effect

of the quark masses. Consequently, even without the quark masses, the charged pions π±

would have small but non-zero mass and only the neutral pion would be massless. On the

other hand, even without the electromagnetism, the quark mass difference md −mu would

also produce a small M(π±) −M(π0) pion mass splitting in the second order of the mass

perturbation theory, but this effect is much smaller than the electromagnetic mass splitting.

For the 3-flavor NLΣM, we have 8 pseudo-Goldstone pseudoscalar mesons, namely the

3 pions, the 4 kaons (the isospin doublet (K+, K0) and their antiparticles (K
0
, K−)), and

one eta meson. Eq. (49) gives a diagonal mass matrix for these 8 mesons, with eigenvalues

M2(π±) = M2(π0) =

〈
ψψ
〉

2F 2
π
× (mu +md), (53)

M2(K±) =

〈
ψψ
〉

2F 2
π
× (ms +mu), (54)

M2(K0 or K
0
) =

〈
ψψ
〉

2F 2
π
× (ms +md), (55)

M2(η) =

〈
ψψ
〉

2F 2
π
×
(

4
3ms + 1

3(md +mu)
)
. (56)

Adding the EM corrections to the M2 of the charged pions or kaons, we get a pretty good

fit to the real-life meson masses

M(π) = 135 MeV, M(K±) = 494 MeV, M(K0) = 498 MeV, M(η) = 547 MeV (57)

for

mu ≈ 2.16 MeV, md ≈ 4.67 MeV, ms ≈ 93 MeV (58)

(renormalized to µ = 2 GeV), while F ≈ fπ = 93 MeV and
〈
ψψ
〉
≈ (360 MeV)3.

Note: without the axial anomaly, there would be 9 rather than 8 pseudo-Goldstone

pseudoscalar mesons in the octet+singlet of the flavor SU(3). And indeed in real life there

is a ninth pseudoscalar meson η′, but the anomaly gives it a larger mass M(η′) = 947 MeV
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than the other 8 pseudoscalar mesons. Moreover, the η′ is not exactly an SU(3) singlet while

η is not exactly a member of an octet; instead there is a roughly 15◦ mixing between the two

mesons because the quark masses give mass2 to one combination of two isosinlget mesons

while the anomaly gives mass2 to another combination. The easiest way to see this is in

terms of the U(3) NLΣM, where the matrix-valued field W (x) is unitary but its determinant

is not restricted, and the Lagrangian is

L = F 2 tr(∂µW † ∂µW ) +
〈
ψψ
〉
× tr(mW +m†W †) + A×

(
det(W ) + det(W †)

)
(59)

for some constant A = O(ΛQCD). The A term breaks the U(1)A subgroup of the chiral

symmetry of the NLΣM, so it represents the effect of the axial anomaly on the meson

masses.

Together, the A term and the quark mass terms yield a non-diagonal 2×2 mass2 matrix

for the two isosinglet mesons — namely the SU(3) singlet and the isosinglet member of

the octet. with the eigenstates being the physical η and η′ mesons. For A ≈ 2
3ms

〈
ψψ
〉
≈

(230 GeV)4, this mass2 matrix is

M2 ≈ 0.16 GeV2 ×

(
2.0 −1.4

−1.4 7.0

)
, (60)

which gives a good fit to the 15◦ mixing angle between the η meson and the octet state

(or between the η′ meson and the singlet state), although the masses M1 ≈ 510 MeV and

M2 ≈ 1080 MeV come out a few percent off from the real-life values Mη = 547 MeV and

Mη′ = 947 MeV.
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