
Phase Space Factors

Consider a quantum transition from some initial state to a continuum of unbound states.

For example, an excited atom emitting a photon, or an unstable particle decaying into two or

more lighter particles. Another example would be scattering, in which the initial unbound

state of two particles about to collide transitions into another unbound state of particles

moving in different directions. In all such cases, the final states form a continuum, the

transition not to a specific final state but to a continuous family of similar final states.

Fermi’s golden rule gives the rate of such transitions:

Γ
def
=

d probability

d time
=

2πρ

h̄
×
∣∣∣〈final| T̂ |initial〉

∣∣∣2 (1)

where T̂ = V̂ + higher order corrections, and ρ is the final states’ density

ρ =
dNfinal states

dEfinal
. (2)

Equivalently,

Γ =

∫
dNfinal

∣∣∣〈final| T̂ |initial〉
∣∣∣2 × 2π

h̄
δ(Efinal − Einitial). (3)

For an example, consider an atom in an excited state emitting a photon while the atom

itself drops to a lower energy state. Thus, the initial and the final states are eigenstates of

the free Hamiltonian

Ĥ0 = Ĥ(atom) + Ĥ(free photons) (4)

while the interactions between the quantum EM fields and the atom’s electrons comprise the

perturbation V̂ . For a moment, let’s fix the specific initial and final states of the atom as

well as the photon’s polarization λ. However, the final states still form a continuous family

parametrized by the photon’s momentum pγ . In the large-box normalization, the number

of such final states is

dNfinal =

(
L

2π

)3

d3kγ =
L3

(2π)3
× k2

γ dkγ d
2Ωγ (5)

where d2Ωγ is the infinitesimal solid angle into which the photon is emitted. At the same
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time,

Enet
final − Enet

initial = h̄ckγ + Eatom
final − Eatom

initial = h̄ckγ − ∆Eatom, (6)

hence (to the first order of the perturbation V̂ )

Γ =
1

(2π)2h̄

∫
d2Ωγ

∫
dkγ k

2
γ × L3

∣∣∣〈atomf + γ
∣∣ V̂ |atomi〉

∣∣∣2 × δ(h̄ckγ −∆Eatom). (7)

In this formula, the L3 factor in the density of states factor cancels against the (square of

the) L−3/2 factor in the matrix element due to the photon’s wave function in the large-box

normalization. Specifically, in the electric dipole approximation to the interaction between

the EM fields and the atom

V̂ ≈ −Ê(xatom) · d̂ (d̂ being the atom’s electric dipole moment), (8)

we have 〈
atomf + γ

∣∣ V̂ |atomi〉 ≈ − 〈γ(k, λ)| Ê |vac〉 · 〈f | d̂ |i〉atom

= −iL−3/2
√

2πh̄ωk e
−ik·xatom e∗k,λ · 〈f | d̂ |i〉atom .

(9)

hence

Γ ≈
∫
d2Ωγ

∫
dkγ k

2
γ ×

ω = ckγ
2π

∣∣∣e∗k,λ · 〈f | d̂ |i〉atom

∣∣∣2 × δ(h̄ckγ −∆Eatom). (10)

Integrating over the kγ removes the delta-function for the energy, and we are left with

Γ =
(∆Eatom)3

2πh̄4c3

∫
d2Ωγ

∣∣∣e∗k,λ · 〈f | d̂ |i〉atom

∣∣∣2. (11)

Moreover, we may drop the
∫
dΩ integral and get the partial rate of photon emission in a

particular direction,

dΓ

dΩγ
=

(∆Eatom)3

2πh̄4c3
×
∣∣∣e∗k,λ · 〈f | d̂ |i〉atom

∣∣∣2. (12)

Alternatively, we may not only integrate over the photon’s direction but also sum over its

polarization as well as some quantum numbers of the atom’s final state — such as mj —

2



that we are not bothering to measure. This gives us a more inclusive transition rate

Γ =
(∆Eatom)3

2πh̄4c3
×
∫
d2Ωγ

∑
λ

∑
mj(f)

∣∣∣e∗k,λ · 〈f | d̂ |i〉atom

∣∣∣2
=

4(∆Eatom)3

3h̄4c3
×
∑
mj(f)

∣∣〈f | d̂ |i〉atom

∣∣2. (13)

For another example, consider the decay of an unstable particle into n daughter parti-

cles. Due to momentum conservation, only n − 1 of the daughter particle momenta p′i are

independent, but formally we may integrate over all n of the p′i but include a delta-function

to reimpose the momentum conservation. Thus,

Γ =

∫
L3d3p′1
(2πh̄)3

· · ·
∫
L3d3p′n
(2πh̄)3

∣∣∣〈p′1, . . . ,p′n∣∣ T̂ |pin〉
∣∣∣2 ×

×
(

2πh̄

L

)3

δ(3)(p′1 + · · ·+ p′n − pin)× 2π

h̄
δ(E′1 + · · ·+ E′n − Ein).

(14)

This formula assumes non-relativistic big-box normalization of quantum states and matrix

elements. Changing to the continuum normalization — which removes the powers of L3 in

both phase-space factors and in the matrix element — and also using the h̄ = c = 1 units,

turns eq. (14) to

Γ =

∫
d3p′1
(2π)3

· · ·
∫
d3p′n
(2π)3

∣∣∣〈p′1, . . . ,p′n∣∣ T̂ |pin〉
∣∣∣2 ×

× (2π)3δ(3)(p′1 + · · ·+ p′n − pin)× (2π)δ(E′1 + · · ·+ E′n − Ein).
(15)

In a relativistic theory, we may combine the δ-functions for the momentum conservation and

the energy conservation into a single 4D δ-function

(2π)3δ(3)(p′1+· · ·+p′n−pin)×(2π)δ(E′1+· · ·+E′n−Ein) = (2π)4δ(4)(p′1+· · ·+p′n−pin). (16)

Also, we should use the relativistic normalization of the particle states, which changes the

transition matrix element to〈
p′1, . . . ,p

′
n

∣∣M̂ |pin〉 ≡
〈
p′1, . . . ,p

′
n

∣∣ T̂ |pin〉rel =
√

2Ein

n∏
i=1

√
2E′i×

〈
p′1, . . . ,p

′
n

∣∣ T̂ |pin〉nonrel .

(17)

Consequently, in eq. (15) the mod-square of the relativistic decay amplitude 〈p′1, . . . ,p′n| M̂ |pin〉
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should be divided by a 2E factor for each initial or final particle, thus

Γ =
1

2Ein

∫
d3p′1

(2π)3 2E′1
· · ·
∫

d3p′n
(2π)3 2E′n

∣∣〈p′1, . . . , p′n∣∣M|pin〉
∣∣2×(2π4)δ(4)(p′1+· · ·+p′n−pin).

(18)

In other words, an unstable particle (0) decays into n final-state particles (1′) + · · ·+ (n′) at

the rate

Γ =

∫
dPdecay ×

∣∣〈1′, 2′, . . . , n′∣∣M|0〉∣∣2 (19)

whereM(0→ 1′+ · · ·+n′) ≡ 〈1′, . . . , n′| M̂ |0〉 is the relativistic decay amplitude calculates

according to the Feynman rules, and dP is the phase space factor

dPdecay =
1

2E0
×

n∏
i=1

d3p′i
(2π)32E′i

× (2π)4δ(4)(E′1 + · · ·+ E′n − E0). (20)

Likewise, the transition rate for a generic 2-particle to n-particle scattering process is

given by

Γ =
1

2E1 × 2E2

∫
d3p′1

(2π)3 2E′1
· · ·
∫

d3p′n
(2π)3 2E′n

∣∣〈p′1, . . . , p′n∣∣M|p1, p2〉
∣∣2 ×

× (2π4)δ(4)(p′1 + · · ·+ p′n − p1 − p2).

(21)

In terms of the scattering cross-section σ, the rate (21) is Γ = σ×flux of initial particles. In

the large-box normalization the flux is L−3|v1 − v2|, so in the continuum normalization it’s

simply the relative speed |v1 − v2|. Consequently, the total scattering cross-section is given

by

σtot =
1

4E1E2|v1 − v2|

∫
d3p′1

(2π)3 2E′1
· · ·
∫

d3p′n
(2π)3 2E′n

∣∣〈p′1, . . . , p′n∣∣M|p1, p2〉
∣∣2 ×

× (2π4)δ(4)(p′1 + · · ·+ p′n − p1 − p2),
(22)

or in other words

σtot =

∫
dPscattering ×

∣∣〈1′, 2′, . . . , n′∣∣M|1, 2〉∣∣2 (23)
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for dPscattering =
1

4E1E2|v1 − v2|
×

n∏
i=1

d3p′i
(2π)32E′i

× (2π)4δ(4)(E′1 + · · ·+ E′n − E0).(24)

A note on Lorentz invariance of decay rates or cross-sections. The matrix elements

〈final|M |initial〉 are Lorentz invariant, and so are all the integrals over the final-particles’

momenta and the δ-functions. The only non-invariant factor in the decay-rate formula (18)

is the pre-integral 1/E0, hence the decay rate of a moving particle is

Γ(moving) = Γ(rest frame)× M

E
(25)

where M/E is precisely the time dilation factor in the moving frame.

As to the scattering cross-section, it should be invariant under Lorentz boosts along the

initial axis of scattering, thus the same cross-section in any frame where p1 ‖ p2. This

includes the lab frame where one of the two particles is initially at rest, the center-of-mass

frame where p1 +p2 = 0, and any other frame where the two particles collide head-on. And

indeed, in any frame where both p1 and p2 are parallel to the z axis, the pre-integral factor

in eq. (22) for the cross-section becomes

1

4E1E2|v1 − v2|
=

1

4|E1p2 − E2p1|
=

1

4|εµνxypµ1pν2 |
, (26)

which is manifestly invariant under the SO+(1, 1) group of Lorentz boosts along the z axis.

Let’s simplify eq. (22) for a 2 particle→ 2 particle scattering process in the center-of-mass

frame where p1 + p2 = 0. In this frame,

E1E2 |v1 − v2| = |E2p1 − E1p2| = |p| × (E1 + E2 = Etot), (27)

hence the phase-space factor

Pscattering =
1

4|p|Etot
× Pint (28)
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for

Pint =

∫
d3p′1

(2π)3 2E′1

∫
d3p′2

(2π)3 2E′2
(2π)4δ(3)(p′1 + p′2)δ(E′1 + E′2 − Enet)

=

∫
d3p′1

(2π)3 × 2E′1 × 2E′2
(2π)δ(E′1(p′1) + E′2(−p′1)− Enet)

=

∫
d2Ωp′ ×

∞∫
0

dp′
p′2

16π2E′1E
′
2

× δ(E′1 + E′2 − Etot)

=

∫
d2Ωp′

[
p′2

16π2E′1E
′
2

/
d(E′1 + E′2)

dp′

]when

E′
1+E′

2=Etot

.

(29)

On the last 3 lines here E′1 = E′1(p′1) =
√
p′2 +m′21 while E′2 = E′2(p′2 = −p′1) =

√
p′2 +m′22 .

Consequently,

dE′1
dp′

=
p′

E′1
,

dE′2
dp′

=
p′

E′2
, (30)

d(E′1 + E′2)

dp′
=

p′

E′1
+

p′

E′2
=

p′

E′1E
′
2

× (E′2 + E′1 = Etot),(31)[
p′2

16π2E′1E
′
2

/
d(E′1 + E′2)

dp′

]when

E′
1+E′

2=Etot

=
p′

16π2Etot
, (32)

and therefore

Pscattering =
1

4|p|Etot
× p′

16π2Etot
×
∫
d2Ωp′

=
p′

p
× 1

64π2E2
tot

×
∫
d2Ωp′ .

(33)

Note: since the scattering amplitude M may depend on the directions of the scattered

particles, we should multiply the phase space factor by the |M|2 before integrating over

those directions. This means that we should not evaluate the angular integral in eq. (33)

but rather re-interpret that formula as

dPscattering =
p′

p
× 1

64π2E2
cm
× dΩcm (34)

where

dΩcm = d2Ωp′
1

= d2Ωp′
2

in the center-of-mass frame
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and also

E2
cm = E2

tot(in the center-of-mass frame); (35)

in frame-independent terms,

E2
cm = (E1 + E2)2 − (p1 + p2)2 = (p1 + p2)2 = Mandelstam’s s. (36)

In light of eq. (34), in the center-of-mass frame

dσ(1 + 2→ 1′ + 2′) =
∣∣〈p′1 + p′2

∣∣M|p1 + p2〉
∣∣2 × dPscattering

=
p′

p

1

64π2E2
tot

×
∣∣〈p′1 + p′2

∣∣M|p1 + p2〉
∣∣2 × dΩcm

(37)

and hence the partial cross-section for scattering in a particular direction is

dσ(1 + 2→ 1′ + 2′)

dΩcm
=

p′

p

1

64π2E2
tot

×
∣∣〈p′1 + p′2

∣∣M|p1 + p2〉
∣∣2 . (38)

Finally, the net cross-section — into specific final particle species but emitted in any direction

— obtains as an integral

σnet(1 + 2→ 1′ + 2′) =
p′

p
× 1

64π2E2
cm
×
∫
d2Ωcm

∣∣〈p′1 + p′2
∣∣M|p1 + p2〉

∣∣2 . (39)

Note: the net cross-sections have same values in all frames where the initial momenta are

collinear, so you may use eq. (39) in any such frame, provided you evaluate the (p′/p) ration

in the center-of-mass frame. But the infinitesimal solid angles dΩ are not invariant under

Lorentz boosts along the scattering axis, so eq. (38) for the partial cross-section applies only

in the center-of mass frame. In any other collinear frame, we would have

dσ

dΩ
=

dσ

dΩcm
× dΩcm

dΩ
(40)

with a non-trivial frame-dependent factor dΩcm/dΩ.
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Finally, let me write down the phase-space factor for a 2-body decay (1 particle →
2 particles) in the rest frame of the initial particle. The under-the-integral factors for such a

decay are the same as in eq. (29) for a 2→ 2 scattering, but the pre-integral factor is 1/2Min

instead of 1/4pEcm, thus instead of eq. (34) we get

dPdecay =
1

2Min
× p′

16π2(Etot = Min)
× dΩcm =

p′

32π2M2
in

× dΩcm . (41)

Consequently, the partial decay rate (for the final particles flying along a particular axis) is

dΓ(0→ 1′ + 2′)

dΩcm
=

p′

32π2M2
×
∣∣〈p′1 + p′2

∣∣M|p0〉
∣∣2 , (42)

and the net decay rate — into specific particle species but flying in any directions — is

Γ(0→ 1′ + 2′) =
p′

32π2M2
×
∫
d2Ωcm

∣∣〈p′1 + p′2
∣∣M|p0〉

∣∣2 . (43)

Postscript: In these notes, I have treated all particles as scalars and ignored their spin

states. For scattering of decay processes involving particles with non-zero spins, we should

distinguish between the polarized cross-sections or decay rates — in which we know the spin

states of all the initial and final particles, — and the un-polarized cross-sections or decay

rates — in which we sum over the final particles’ spin states and average over the initial

particles’ spin states. I shall explain this issue later in class when we get to QED.
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