
QCD Feynman Rules

The classical chromodynamics has a fairly simple Lagrangian

L = LYang−Mills + Lquarks = −1

4
F a
µνF

aµν +
∑

f

Ψif (i6D +mf )Ψ
if (1)

where i denotes the color of a quark and f its flavor. In my notations, I follows the usual

summation convention for the Lorentz or color indices, — and the Dirac indices are implicit

altogether; but the sum over the quark flavors is explicit since the mass mf depends on the

flavor. OOH, the covariant derivatives Dµ are flavor-blind, DµΨ
if = ∂µΨ

if + igAa
µ(t

a)ijΨ
jf

where ta are matrices representing the gauge group generators in the quark representation; in

QCD the quarks belong to the fundamental 3 representation of the SU(3)C so ta are 1
2 × Gell-

Mann matrices λa.

The Quantum ChromoDynamics is more complicated, even at the Lagrangian level: Besides

the physical terms (1), there are gauge-fixing and ghost terms, and then there the counterterms.

Altogether, bare QCD Lagrangian is

Lbare = Lren + Lc.t. , (2)

Lren = Lphys + Lg.f. + Lgh

= −1

4
F a
µνF

aµν +
∑

f

Ψif (i6D +mf )Ψ
if − 1

2ξ

(

∂µA
aµ
)2

+ ∂µc̄
aDµca (3)

= −1

2

(

∂µA
a
ν − ∂νA

a
µ

)2 − 1

2ξ

(

∂µA
aµ
)2

+ (∂µc̄
a)(∂µca) +

∑

f

Ψif (i6∂ −mf )Ψ
if (4)

+ gfabcAb
µA

c
ν∂µA

aν − g2

4
(fabcAb

µA
c
ν)

2 − gfabc(∂µc̄
a)Abµcc (5)

− gAa
µ

∑

f

Ψifγ
µ(ta)ijΨ

jf , (5)

and

Lc.t. = −δ3
4
(∂µA

a
ν − ∂νA

a
µ)

2 + gδ
(3g)
1 fabcAb

µA
c
ν∂µA

aν − g2δ
(4g)
1

4
(fabcAb

µA
c
ν)

2 (6)

+ δ
(gh)
2 ∂µc̄

a∂µca − gδ
(gh)
1 fabc∂µc̄

aAbµcc (6)

+
∑

f

Ψif

(

iδ
(qf )
2 6∂ + δ

(qf )
m − gδ

(qf )
1 6Aata

)

Ψif . (6)
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On the last line here, the quark-related counterterms δ
(qf )
2 , δ

(qf )
1 , and δ

(qf )
m could be flavor-

dependent due to flavor-dependence of the quark mass.

QCD Feynman rules follow from expanding the bare Lagrangian (2) into the renormalized

quadratic terms (line (4)), the renormalized cubic and quartic terms (lines (5)), and the coun-

terterms (lines (6)). Specifically, the quadratic terms on line (4) give rise to the gluon, ghost,

and quark propagators:

⊲⊳ The first two terms on line (4) are responsible for the gluon propagator

a

µ

b

ν
=

−iδab

k2 + i0

(

gµν + (ξ − 1)
kµkν

k2 + i0

)

. (7)

Apart from the δab factor for the adjoint colors, this propagator looks just like the photon

propagator in a similar gauge.

⊲⊳ The third term on the line (4) governs the ghost propagator

a b
=

iδab

k2 + i0
. (8)

Note the arrow here, as a ghost cb is different from an antighost c̄a.

⊲⊳ Finally, the last term on line (4) is responsible for the quark propagator

f

i

f ′

j
=

iδijδ
f
f ′

6p−mf + i0
. (9)

Apart from its color and flavor indices — and hence factors δij and δff ′ — and the flavor-

dependent mass mf , the quark propagators looks just like the electron or muon propagator

in QED.

Next, consider the cubic and quartic vertices stemming from the interaction terms on lines (5).
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• The first term on the top line (5) gives rise to the three-gluon vertex

a
α

k1

b
β

k2

c
γ

k3

= −gfabc
[

gαβ(k1 − k2)
γ + gβγ(k2 − k3)

α + gγα(k3 − k1)
β
]

.

(10)

The specific indexology of this vertex follows from totally symmetrizing the 3 gluon fields

Aa
α, A

b
β , and Ac

γ in the interaction term gfabc(∂µA
a
ν)A

bµAcν . Since the fabc factor is totally

antisymmetric in the adjoint colors of the 3 gluons, this means totally antisymmetrizing

the Lorentz and derivative indices, thus

L ⊃ gfabc(∂γAa
α)A

b
βA

c
γg

αβ =
gfabc

6
×









gαβ(∂γAa
α)A

b
βA

c
γ − gαβAa

α(∂
γAb

β)A
c
γ

+ gβγ(∂αAb
β)A

c
γA

a
α − gβγAb

β(∂
αAc

γ)A
a
α

+ gγα(∂βAc
γ)A

a
αA

b
β − gγαAc

γ(∂
βAa

α)A
b
β









.

(11)

After that, in the momentum space each ∂ becomes the appropriate ik and then there is

an overall factor of i, hence the 3-gluon vertex (10).

• The second term on the top line (5) is quartic in the gauge field, so it gives rise to the

four-gluon vertex

a
α b

β

c
γd

δ

= −ig2







fabef cde(gαγgβδ − gαδgβγ)

+ facef bde(gαβgγδ − gαδgγβ)

+ fadef bce(gαβgδγ − gαγgδβ)






. (12)

Again, the messy indexology of this vertex stems from totally symmetrizing the quartic
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interaction terms WRT to the 4 gauge fields Aa
α, A

b
β, A

c
γ and Ad

δ :

L ⊃ − g2

4

(

fabeAa
αA

b
β)

2 = −g2

4

(

fabeAa
αA

b
β)g

αγgβδ
(

f cdeAc
γA

d
δ

)

= −g2

24
Aa
αA

b
βA

c
γA

d
δ ×







fabef cde(gαγgβδ − gαδgβγ)

+ facef bde(gαβgγδ − gαδgγβ)

+ fadef bce(gαβgδγ − gαγgδβ)







(13)

where fabef cde is antisymmetric WRT a ↔ b or c ↔ d and likewise for the other color-index

structures, hence the 4-gluon vertex (12).

• The third term −gfabc(∂µc̄a)Ab
µc

c on the top line (5) gives rise to the ghost-antighost-gluon

vertex

a

µ

b

c

p

p′
= +gfabcp′µ. (14)

Note that although the ghosts and antighosts look like massless scalar fields, the momentum

structure of this vertex is different from a similar vertex for a physical colored scalar field we

might add to the theory, of for that matter, from the scalar-photon vertex in scalar QED.

For a physical scalar field, the single-gluon vertex involves the sum of two scalar lines’

momenta (p+ p′)µ, but the ghost vertex (14) involves only the antighost’s momentum p′µ

but not the ghost’s momentum pµ.

◦ Also, unlike a physical scalar, the ghost fields do not have the AµAµc̄c term in their

Lagrangian (color indices suppresses), hence there is no seagull vertex for the ghosts
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• Finally, the term on the second line (5) gives rise to the quark-antiquark-gluon vertex

similar to the electron-positron-photon vertex in QED,

a

µ

i f

j f ′

= −igγµ × δf
′

f × (ta)ji . (15)

The δf
′

f factor for the quark flavors is similar to not mixing the electron, muon, and tau

lepton species in QED, but the color matrix (ta)ji is new to QCD. I shall return to this

matrix later in these notes.

In addition, the renormalized theory has a whole bunch of the counterterm vertices:

∗ The two-gluon counterterm vertex

a
µ

b
ν

= −iδ3δ
ab
(

k2gµν − kµkν
)

. (16)

∗ The three-gluon counterterm vertex

a
α

k1

b
β

k2

c
γ

k3

= −gδ
(3g)
1 ×fabc

[

gαβ(k1 − k2)
γ + gβγ(k2 − k3)

α + gγα(k3 − k1)
β
]

.

(17)

∗ The four-gluon counterterm vertex
a

α b
β

c
γd

δ

= −ig2δ
(4g)
1 ×







fabef cde(gαγgβδ − gαδgβγ)

+ facef bde(gαβgγδ − gαδgγβ)

+ fadef bce(gαβgδγ − gαγgδβ)






. (18)
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∗ The two-quark counterterm vertex

f

i
f ′

j
= δf

′

f δji ×
(

iδ
(qf )
m − iδ

(qf )
2 ×6p

)

. (19)

∗ The quark-gluon counterterm vertex

a

µ

i f

j f ′

= −igδ
(qf )
1 δf

′

f × γµ × (ta)ji . (20)

∗ The two ghost counterterm vertex

a b = δab × iδ
(gh)
2 × k2. (21)

∗ The ghost-gluon counterterm vertex

a

µ

b

c

p

p′
= +gδ

(gh)
1 × fabcp′µ. (22)

In addition to all these propagators and vertices, there are a few general rules:

⋆ Remember that the ghost fields are fermionic, so each closed loop of ghost propagators

carries a minus sign.

⋆ The flavor f remains constant along any quark line, open or closed. For an open line,

f matches both the incoming and the outgoing quarks (or antiquarks); for closed quark

loops, we sum over all the flavors.
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⋆ The color of a quark changes from propagator to propagator since the quark-quark-gluon

vertices carry the (ta)ji factors. In matrix notations, the ta generators should be multiplied

right-to-left in the order of arrows on the quark line, for example

c b a

j i

=⇒
(

tctbta
)j

i
× other factors.

For the closed quark lines, one starts at an arbitrary vertex, multiplies all the genera-

tors right-to-left in the order of the arrows, than takes the trace over the color indices,

tr(· · · tctbta).

Ward Identities

QCD has weaker Ward identities than QED. In particular, consider the on-shell scattering

amplitudes involving the longitudinally polarized gluons. When one gluon is longitudinal and all

other gluons are transverse, the amplitude vanishes. But when two or more gluons are longitudi-

nal, the amplitude does not vanish; instead, it is related to the amplitudes involving the external

ghosts instead of the longitudinal gluons.

As an example, consider the tree level annihilation of a quark and an antiquark into a pair

of gluons, qq̄ → gg. In QED there are two tree diagrams for the e−e+ → γγ annihilation, but in

QCD there are three diagrams:

(p1, i)(p2, j)

(k1, µ, a)(k2, ν, b)

q1

(p1, i)(p2, j)

(k1, µ, a)(k2, ν, b)

q2

(p1, i)(p2, j)

(k1, µ, a)(k2, ν, b)

(k1 + k2, λ, c)

(23)
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According to the QCD Feynman rules, these diagrams evaluate to

iM1 = v̄(p2) (−igγνe∗2ν)
i

6q1 −m
(−igγµe∗1µ) u(p1)×

(

tbta
)j

i
, (24)

iM2 = v̄(p2) (−igγµe∗1µ)
i

6q2 −m
(−igγνe∗2ν) u(p1)×

(

tatb
)j

i
, (25)

iM3 = v̄(p2) (−igγλ) u(p1)× (tc)ji ×
−i

(k1 + k2)2
×

× (−g)fabc
[

gµν(−k1 + k2)
λ + gνλ(−k2 − (k1 + k2))

µ + gλµ((k1 + k2) + k1)
ν
]

〈〈 the 3 gluon vertex; the unusual signs are due to directions of momenta 〉〉

〈〈 the k1 and k2 are outgoing while the k3 = k1 + k2 is incoming 〉〉

× e∗1µe
∗

2ν , (26)

Mnet
tree = M1 + M2 + M3 . (27)

Clearly, each term in the net amplitude is O(g2) and each term includes the polarization vectors

for the two gluons, thus

M = e∗1µe
∗

2ν ×Mµν . (28)

So let us check the Ward identity k1µ ×Mµν ??
= 0.

For the first diagram’s amplitude we have

k1µ ×Mµν
1 = −g2

(

tbta
)j

i
× v̄γν

1

6q1 −m
6k1u. (29)

In the second factor here, q1 = p1 − k1, hence

1

6q1 −m
6k1 =

1

6q1 −m
(6p1−6q1) = −1 +

1

6q1 −m
(6p1 −m), (30)

which for the on-shell quark gives

1

6q1 −m
6k1 u(p1) = −u(p1) +

1

6q1 −m
(6p1 −m)u(p1) = −u(p1) + 0 (31)

because (6p1 −m)u(p1) = 0. Thus,

k1µ ×Mµν
1 = +g2

(

tbta
)j

i
× v̄(p2)γ

νu(p1). (32)
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Likewise, for the second diagram

k1µ ×Mµν
2 = −g2

(

tbta
)j

i
× v̄ 6k1

1

6q2 −m
γνu. (33)

where in the second factor

q2 = k1 − p2 =⇒ 6k1
1

6q2 −m
= 1 − (6p2 +m)

1

6q2 −m
=⇒ v̄(p2) 6k1

1

6q2 −m
= +v̄(p2) − 0,

(34)

thus

k1µ ×Mµν
2 = −g2

(

tatb
)j

i
× v̄(p2)γ

νu(p1). (35)

In QED, k1µ ×Mµν
1 and k1µ ×Mµν

2 would have canceled each other, but in QCD eqs. (32)

and (35) carry different color-dependent factors. So instead of cancellation, we have

k1µ ×Mµν
1+2 = g2v̄γνu×

(

tbta − tatb
)j

i
= g2v̄γνu×−ifabc

(

tc
)j

i
. (36)

But the net color-dependent factor is similar to the third amplitude, so there is a hope that the

Ward identity might work when all three diagrams are put together.

For the third diagram we have

k1µ ×Mµν
3 = −ig2fabc

(

tc
)j

i
× v̄γλu× 1

(k1 + k2)2
×

× k1µ ×
[

gµν(k2 − k1)
λ + gνλ(−k1 − 2k2)

µ + gλµ(2k1 + k2)
ν
]

,

(37)

where on the second line

k1µ × [· · ·] = kν1 (k2 − k1)
λ + gνλ(−k21 − 2k1k2) + kλ1 (2k1 + k2)

ν

= gλν
(

−(k1 + k2)
2 + k22

)

+
[

(2− 1)kλ1k
ν
1 + kλ1k

ν
2 + kλ2k

ν
1

]

〈〈 on shell 〉〉

= −gλν(k1 + k2)
2 + (k1 + k2)

λ(k1 + k2)
ν − kλ2k

ν
2 .

(38)

Plugging the three terms here back into eq. (37), we obtain

k1µ ×Mµν
3 = k1µ ×Mµν

3,a + k1µ ×Mµν
3.b + k1µ ×Mµν

3,c (39)

where

k1µ ×Mµν
3,a = +ig2fabc

(

tc
)j

i
× v̄(p2)γ

νu(p1), (40)
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k1µ ×Mµν
3,b = −ig2fabc

(

tc
)j

i
× v̄(p2)(6k1+6k2)u(p1)×

(k1 + k2)
ν

(k1 + k2)2
, (41)

k1µ ×Mµν
3,c = +ig2fabc

(

tc
)j

i
× v̄(p2)(6k2)u(p1)×

kν2
(k1 + k2)2

. (42)

By inspection of eqs. (40) and (36), the first term in eq. (39) precisely cancels the contributions

of the first two diagrams,

k1µMµ
1+2 + k1µ ×Mµν

3,a = 0. (43)

The second term’s contribution (41) vanishes for the on-shell quarks. Indeed, by momentum

conservation k1 + k2 = p1 + p2, hence

v̄(p2)(6k1+6k2)u(p1) = v̄(p2)(6p1+6p2)u(p2) = v̄(p2)(6p2+m)u(p1) + v̄(p2)(6p1−m)u(p1) = 0 + 0

(44)

and therefore k1µ ×Mµν
3,b = 0.

But the third term’s contribution (41) does not vanish, and this breaks the Ward identity

for the net QCD amplitude:

k1µ ×Mµν
net = k1µ ×Mµν

3,c = +ig2fabc
(

tc
)j

i
× v̄6k2u× 1

(k1 + k2)2
× kν2 6= 0. (45)

However, the net violation of the Ward identity is proportional to the kν2 factor. Therefore, when

we contract the amplitude Mµν
net with the polarization vector of the second gluon, we obtain

k1µ ×Mµν
nete

∗

2ν = [· · ·]× (k2e
∗

2), (46)

which vanishes when the second gluon is transversely polarized! This agrees with the weakened

Ward identity of QCD: Amplitudes involving one longitudinal gluon vanish if all the other gluons

are transverse, but if two (or more) gluons are longitudinal, the amplitude does not have to

vanish. Instead, such amplitudes are related to the amplitudes involving ghosts and antighosts.

Indeed, consider the annihilation amplitude of two quarks into two longitudinal gluons,

M(qq̄ → gLgL). In Minkowski space, there are two distinct longitudinal polarizations for a
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gluon moving in the direction n, namely eµ
±

= (1,±n)/
√
2. In light of eq. (46), the ampli-

tude for producing two gluons with polarizations L+ (i.e., eµ ∝ kµ for each gluon) vanishes,

M(qq̄ → gL+gL+) = 0. The amplitude for producing two gluons with longitudinal polarizations

L− also vanishes, M(qq̄ → gL−gL−) = 0, although I am not going to prove it in these notes.

Instead, let me focus on the non-zero amplitude for producing one gluon with the longitudinal

L+ polarization and the other gluons with the longitudinal L− polarization.

In light of eq. (46), we get

M(qq̄ → gL+gL−) =

[

e∗1µ(L+) =
k1µ

ω1

√
2

]

×Mµν
net × e∗2ν(L−) =

1

ω1

√
2
× [· · ·]×

(

e∗2ν(L−)kν2
)

,

(47)

where [· · ·] stands for the factors from eq. (45) which I did not write down explicitly in eq. (46),

namely

[· · ·] = +ig2fabc
(

tc
)j

i
× v̄6k2u× 1

(k1 + k2)2
, (48)

while

e∗µ2 (L−)gµνk
ν
2 =

(1,−n)µ√
2

× gµν × ω2(1,+n)ν =
ω2√
2
× 2. (49)

Thus, in the center of mass frame where ω1 = ω2 =
1
2Ecm while (k1 + k2)

2 = s = E2
cm, we have

M(q + q̄ → gL+ + gL−) =
ig2

s
fabc

(

tc
)j

i
× v̄(p2)6k2u(p1). (50)

Let’s compare this amplitude to the annihilation of the same quark and the same antiquark

into a ghost and antighost. At the tree level, there is only one diagram for the later process,
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which yields the amplitude

iMtree(q + q̄ → gh + gh) = v̄(p2)(−igγλ)u(p1)× (tc
)j

i
× −igλν

s
× gfabckν2

= −g2

s
fabc

(

tc
)j

i
× v̄(p2)6k2u(p1).

(51)

By inspection, this amplitude is equal to the amplitude (50) for q + q̄ annihilating into two

longitudinal gluons instead of a ghost and an antighost,

M(q + q̄ → gh + gh) = M(q + q̄ → gL+ + gL−). (52)

In the next set of notes we shall learn that such relations stem from the BRST symmetry, but

right now we may use eq. (52) to understand how the physical cross-sections work in QCD.

The ghosts violate the spin-statistics theorem, so we must give up one one of its assumptions:

relativity, positive particle energies, or the positive norm in the Hilbert space. The correct choice

is to give up on the norm positivity in the extended Hilbert space including both the physical

and the unphysical quanta: While the physical (anti)quarks and transverse gluons must have

positive norm, the norm for the unphysical longitudinal gluons is ghost has mixed signature —

positive for the longitudinal gluons but negative for the ghosts and antighosts. And because of

the negative norm for the (anti)ghosts states, the cross-section for the annihilation-into-ghosts

process comes out negative,

dσ

dΩ
= − |M|2

64π2s
. (53)

By themselves, the negative cross-sections are impossible, but they make sense in the context of

net unpolarized cross-section where the final states could be either gluons or ghosts,

dσ(q + q̄ → · · ·)
dΩ

=
dσ(q + q̄ → gT + gT )

dΩ
+

dσ(q + q̄ → gL + gL)

dΩ
+

dσ(q + q̄ → gh + gh)

dΩ
.

(54)

Thanks to eq. (52), the negative cross-section for the annihilation into ghosts precisely cancels

the positive cross-section for the annihilation into longitudinal gluons,

dσ(q + q̄ → gL + gL)

dΩ
+

dσ(q + q̄ → gh + gh)

dΩ
= 0. (55)

Thus, the un-physical processes cancel each other, and the net annihilation cross-section is just
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the cross-section for producing the physical states only. At the O(g4) level, this means annihila-

tion into a pair of transverse gluons only,

dσ(q + q̄ → g + g or gh + gh)

dΩ
=

dσ(q + q̄ → gT + gT only)

dΩ
. (56)

Note: this relation is important for the unitarity of QCD.
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