
Introduction to Quantum Fields

Hamiltonian Formalism

A classical field φ(x, t) is a continuous family of dynamical variables φx(t). In the

Hamiltonian formalism, each of these variables has its canonical momentum πx(t), and the

continuous family of these momenta form the canonically conjugate field π(x, t). For multiple

fields φi(x, t), each field has its own conjugate field πi(x, t). Most generally, the canonical

fields obtain as variational derivatives of the Lagrangian

πi(x) =
δL[allφi and all

•

φi @allx]

δ
•

φi(x)
⇐⇒ δL[due to δ

•

φi] =

∫
d3x πi(x)δ

•

φi(x). (1)

For a local Lagrangian

L =

∫
d3xL(φi,∇φi,

•

φi, maybe ∇
•

φi,∇∇φi, . . . , . . . ∀i = 1, . . . , N), (2)

the variational derivative (1) reduces to the ordinary derivatives of the Lagrangian density,

πi(x) =
δL

δ
•

φi(x)
=

∂L

∂(
•

φi)
− ∇ · ∂L

∂(∇
•

φi)
+ · · · . (3)

In relativistic field theories where the Lagrangian density depends only on the fields and

their first spacetime derivatives, we have only the first term in this formula,

πi(x, t) =
∂L

∂(
•

φi)
@(x, t). (4)

In particular, for a relativistic scalar field with Lagrangian density

L(φ,
•

φ,∇φ) = 1
2(

•

φ)2 − 1
2(∇φ)2 − V (φ) (5)

(in h̄ = c = 1 units) the canonically conjugate field is simply

π =
∂L

∂
•

φ
=

•

φ, (6)

meaning π(x, t) =
•

φ(x, t).
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The net energy H of a field configuration generalizes the mechanical formula H =∑
i pi

•
qi − L to

H =

∫
d3x

fields∑
i

πi(x)
•

φi(x) − L, (7)

Or in terms of the energy density

H =

∫
d3xH(x) where H =

∑
i

πi
•

φi − L . (8)

For example, for the relativistic scalar field with Lagrangian density (5), the energy density

is

H = π
•

φ − L = 1
2(

•

φ)2 + 1
2(∇φ)2 + V (φ). (9)

Rephrasing this energy density in terms of the conjugate field π instead of the time derivative

of φ, we obtain the Hamiltonian density

H(φ,∇φ, π) = 1
2π

2 + 1
2(∇φ)2 + V (φ) (10)

and hence the net Hamiltonian

H[φ(x), π(x)] =

∫
d3xH(φ,∇φ, π). (11)

Consequently, the Hamilton equations for the relativistic scalar field and its canonical con-

jugate are

∂φ(x, t)

∂t
= +

δH

δπ(x)

∣∣∣∣
t

=
∂H
∂π

∣∣∣∣
(x,t)

= π(x, t) (12)

while

∂π(x, t)

∂t
= − δH

δφ(x)

∣∣∣∣
t

= −
(
∂H
∂φ
− ∇ · ∂H

∂(∇φ)

)∣∣∣∣
(x,t)

=

(
−dV
dφ

+ ∇ · ∇φ
)

@(x, t).

(13)

Together, these two equations are equivalent to the Euler–Lagrange equation

∂2φ

∂t2
=

∂π

∂t
= ∇2φ − dV

dφ
. (14)
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Quantization

A classical field like φ(x, t) or π(x, t) is a continuous family of dynamical variables φx(t)

or πx(t) labeled by the space coordinates x = (x, y, z). In the quantum theory, each such

dynamical variable becomes an operator in some Hilbert space, so we get continuous families

of operators φ̂x and π̂x. In general, a quantum field is a continuous family of operators, one

operator for each point x of space; in other words, a quantum field is an operator-valued

function of x like φ̂(x) or π̂(x).

Note that the Hilbert space of a QFT is not made of ordinary wavefunctions ψ(x) but

rather of the wave functionals ψ[φ(x)]. Indeed, for a multi-particle system the wave function

ψ(x1, . . . ,xn) depends on all particles’ positions rather than on a single x, or for a system

with N = 3n position variables q1, . . . , qN we have ψ(q1, . . . , qN ). In a field theory, the

discrete variables q1, . . . , qN become a continuous family φx, so the wave function becomes

a functional of all the φx, thus ψ[φ(x)].

In practice, in quantum field theory people almost never bother with the actual wave

functionals ψ[φ(x)] of the quantum states, or with the wave-functional actions of various

operators. Instead, we use the operator algebra to find the energy eigenstates of the free

fields and to do the perturbations theory. This is analogous to how one can solve the

harmonic oscillator — and do the perturbation theory in the un-harmonic corrections —

using nothing but the creation and the annihilation operators â† and â and the commutation

relation [â, â†] = 1, which in turn follows from the [q̂, p̂] = ih̄.

The time evolution of the quantum fields depends on the picture of quantum mechanics.

In the Schrödinger picture, the operator-valued fields φ̂(x) and π̂(x) do not depend on time

so they are functions of x = (x, y, z) only. Instead, the time evolution comes through the

time-dependent quantum states |ψ〉 (t). In the Heisenberg picture it’s the other way around:

the quantum states are time-independent while the operator-valued fields φ̂(x, t) and π̂(x, t)

evolve with time according to the Heisenberg equations

i
∂

∂t
φ̂(x, t) = [φ̂(x, t), Ĥ], i

∂

∂t
π̂(x, t) = [π̂(x, t), Ĥ]. (15)

The commutators here obtain from the canonical commutation relations between the fields

themselves. Generalizing the equal-time commutation relations between position and canon-
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ical momentum operators in ordinary QM

[q̂i(t), q̂j(same t)] = 0, [p̂i(t), p̂j(same t)] = 0, [q̂i(t), p̂j(same t)] = ih̄δij (16)

to continuous families of position-like operators φ̂(x, t) and momentum-like operators π̂(x, t),

we get

[φ̂(x, t), φ̂(y, same t)] = 0,

[π̂(x, t), π̂(y, same t)] = 0,

[φ̂(x, t), π̂(y, same t)] = iδ(3)(x− y)

(17)

(in c = h̄ = 1 units). Note that these commutation relations work only at equal times. At

un-equal times t 6= t′ we get much more complicated commutators

[φ̂(x, t), φ̂(y, t′)] = ???, [π̂(x, t), π̂(y, t′)] = ???, [φ̂(x, t), π̂(y, t′)] = ???, (18)

that we generally do not know how to calculate. (Except for the free fields or order-by-order

in perturbation theory).

Quantum Klein Gordon Equation

To illustrate the power of the equal-time commutation relations (17), let’s use them to

calculate the commutators in Heisenberg equations

i
∂

∂t
φ̂(x, t) = [φ̂(x, t), Ĥ], i

∂

∂t
π̂(x, t) = [π̂(x, t), Ĥ] (15)

for the free relativistic scalar field φ̂(x, t) and its conjugate π̂(x, t), and then use those

Heisenberg equations to derive the quantum version of the Klein–Gordon equation

(
∂2

∂t2
− ∇2 + m2

)
φ̂(x, t) = 0. (19)

The classical free relativistic scalar field has Lagrangian density

L =
1

2

•

φ
2

− 1

2
(∇φ)2 − m2

2
φ2 (20)
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and hence classical Hamiltonian density

H =
1

2
π2 +

1

2
(∇φ)2 +

m2

2
φ2. (21)

For the quantum theory, this gives the Hamiltonian density operator

Ĥ(x, t) = 1
2 π̂

2(x, t) + 1
2

(
∇φ̂(x, t)

)2
+ 1

2m
2 φ̂2(x, t) (22)

and hence the net Hamiltonian operator

Ĥ(t) =

∫
d3x Ĥ(x, t) ≡ same Ĥ ∀t. (23)

Note that the Hamiltonian density operator (22) is time dependent, although this time

dependence cancels out from the net Hamiltonian operator Ĥ since i(d/dt)Ĥ = [Ĥ, Ĥ] ≡ 0.

Consequently, in the commutators

[
φ̂(x, t), Ĥ

]
=

∫
d3x′

[
φ̂(x, t), Ĥ(x′, t′)

]
,

[
π̂(x, t), Ĥ

]
=

∫
d3x′

[
π̂(x, t), Ĥ(x′, t′)

]
(24)

we may evaluate the Hamiltonian density Ĥ(x′, t′) at any time t′ we like, as long it’s the same

t′ for all x′. However, since we know the commutation relations (17) between the quantum

fields only at equal times t′ = t, we are naturally going to use Ĥ(x′, t) for the same time t

as the field φ(x, t) or π̂(x, t) in the commutator (24), thus

[
φ̂(x, t), Ĥ

]
=

∫
d3x′

[
φ̂(x, t), Ĥ(x′, same t)

]
(25)

and
[
π̂(x, t), Ĥ

]
=

∫
d3x′

[
π̂(x, t), Ĥ(x′, same t)

]
. (26)

Let’s evaluate the first of these commutators. On the RHS of eq. (25) we have

[
φ̂(x, t), Ĥ(x′, t)

]
=

1

2

[
φ̂(x, t), π̂2(x′, t)

]
+

1

2

[
φ̂(x, t),

(
∇φ̂(x′, t)

)2]
+
m2

2

[
φ̂(x, t), φ̂2(x′, t)

]
.

(27)

Note that all fields here are taken at the same time t, so all the φ̂(x, t) and φ̂(x′, t) commute
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with each other. Consequently, the last two terms on the RHS of eq. (27) vanish:

∀x,x′,
[
φ̂(x, t), φ̂(x′, t)

]
= 0 =⇒

[
φ̂(x, t), φ̂2(x′, t)

]
= 0

‖
⇓[

φ̂(x, t),∇φ̂(x′, t)
]

=
∂

∂x′

[
φ̂(x, t), φ̂(x′, t)

]
= 0 =⇒

[
φ̂(x, t),

(
∇φ̂(x′, t)

)2]
= 0.

(28)

In the remaining first term on the RHS of (27) we have

[
φ̂(x, t), π̂(x′, t)

]
= iδ(3)(x′ − x), (29)

which is a singular function of x and x′ but as far as the Hilbert space of the quantum field

theory, it’s just a c-number that commutes with all the quantum fields.
?

Consequently,

[
φ̂(x, t), π̂2(x′, t)

]
=
{[
φ̂(x, t), π̂(x′, t)

]
, π̂(x′, t)

}
= 2iδ(3)(x′ − x)× π̂(x′, t) (30)

and therefore [
φ̂(x, t), Ĥ(x′, t)

]
= iδ(3)(x′ − x)× π̂(x′, t). (31)

Integrating this commutator over the x′ gives us

[
φ̂(x, t), Ĥ

]
=

∫
d3x′ iδ(3)(x′ − x)× π̂(x′, t) = iπ̂(x, t) (32)

and hence — by the Heisenberg equation for the φ̂ field —

∂

∂t
φ̂(x, t) = π̂(x, t), (33)

in perfect agreement with the classical Hamilton equation ∂
∂tφ(x, t) = π(x, t).

? In the Hilbert space of the quantum field theory, the operators are fields at different points, or modes
of quantum fields, or polynomials and power series in fields or their modes, etc., etc. But the space
coordinates such as x or x′ where the fields act are not operators in this space but mere labels of the
fields. Consequently, number-valued functions of x and x′, or even singular functions such as δ(3)(x−x′)
are not operators but mere c-numbers — they commute with all the fields.
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Now let’s evaluate the Heisenberg equation for the π̂ field. On the RHS of eq. (26) we

have[
π̂(x, t), Ĥ(x′, t)

]
=

1

2

[
π̂(x, t), π̂2(x′, t)

]
+

1

2

[
π̂(x, t),

(
∇φ̂(x′, t)

)2]
+
m2

2

[
π̂(x, t), φ̂2(x′, t)

]
,

(34)

and this time it’s the first term on the RHS that vanishes. Indeed, at equal times[
π̂(x, t), π̂(x′, t)

]
= 0 =⇒

[
π̂(x, t), π̂2(x′, t)

]
= 0. (35)

For the third term (on the RHS of (34)), we have[
π̂(x, t), φ̂(x′, t)

]
= −iδ(3)(x′ − x), (36)

which is a singular function of x and x′ but a c-number in the Hilbert space of the quantum

fields, hence [
π̂(x, t), φ̂2(x′, t)

]
= −2iδ(3)(x′ − x) · φ̂(x′, t). (37)

Finally, for the second term in (34) we have[
π̂(x, t),∇φ̂(x′, t)

]
=

∂

∂x′

[
π̂(x, t), φ̂(x′, t)

]
= −i ∂

∂x′
δ(3)(x′ − x) (38)

— again, a very singular function of x and x′ but a c-number in the Hilbert space, — so[
π̂(x, t),

(
∇φ̂(x′, t)

)2]
= −2i

∂

∂x′
δ(3)(x′ − x) · ∇φ̂(x′, t). (39)

Altogether we have[
π̂(x, t), Ĥ(x′, t)

]
= 0 − i

∂

∂x′ δ
(3)(x′ − x) · ∇φ̂(x′, t) − im2δ(3)(x′ − x) · φ̂(x′, t) (40)

and hence[
π̂(x, t), Ĥ

]
=

∫
d3x′

(
−i ∂
∂x′

δ(3)(x′ − x) · ∇φ̂(x′, t) − im2δ(3)(x′ − x) φ̂(x′, t)

)
〈〈 integrating the first term by parts 〉〉

=

∫
d3x′ iδ(3)(x′ − x)

(
∇2φ̂(x′, t) − m2φ̂(x′, t)

)
= i∇2φ̂(x, t) − im2φ̂(x, t) 〈〈@x rather than @x′ 〉〉.

(41)

7



Plugging this commutator into the Heisenberg equation for the π̂ field, we arrive at

∂

∂t
π̂(x, t) =

(
∇2 −m2

)
φ̂(x, t). (42)

Finally, combining the two first-order (in ∂/∂t) equations (33) and (42) for the quantum

fields φ̂ and π̂ we obtain the quantum version of the Klein–Gordon equation,

∂2

∂t2
φ̂(x, t) =

∂

∂t
π̂(x, t) =

(
∇2 −m2

)
φ̂(x, t), (43)

or equivalently (
∂2

∂t2
− ∇2 + m2

)
ϕ̂(x, t) = 0. (44)
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