
PHY–396 K/L. Solutions for the magnetic monopole problem.

Part (a):

Classically,

d

dt
Lmech = v × ~π + x× F = 0 + x× F (S.1)

where F is the net force on the charged particle. In presence of the EM fields (1), this force

is

F = qE +
q

c
v ×B =

qQ

r2
n +

qM

cr2
v × n, (S.2)

hence

d

dt
Lmech = (x = rn)× F = 0 +

qM

cr
n× (v × n) =

qM

cr

(
v − (v · n)n

)
. (S.3)

At the same time,

d

dt
JEM = −qM

c

dn

dt
= −qM

c

v − (v · n)n

r
. (S.4)

By inspection of the last two formulae, the separate angular momenta Lmech and JEM are

not conserved, but the net angular momentum (2) is conserved,

d

dt
Jnet =

d

dt
Lmech +

d

dt
JEM = 0. (S.5)

Quod erat demonstrandum.

Part (b):

Let’s start by verifying eq. (7). Since the 3 coordinate operators x̂i commute with each other,

1



we have

[x̂i, Ĵ
EM
j ] = 0 (S.6)

and therefore

[x̂i, Ĵj ] = [x̂i, L̂j ]

= [x̂i, εjk`x̂kπ̂`] = εjk`x̂k[x̂i, π̂`]

= εjk`x̂k × ih̄δi` = ih̄εjkix̂k

= ih̄εijkx̂k .

(S.7)

Verifying eq. (8) takes more work. First,

[π̂i, L̂j ] = [π̂i, εjk`x̂kπ̂`]

= εjk`x̂k × [π̂i, π̂`] + εjk`[π̂i, x̂k]× π̂`

= εjk`x̂k ×
iqMh̄

c
εi`m

x̂m
r̂3

+ εjk` ×−ih̄δik × π̂`

= −ih̄εji`π̂` +
iqMh̄

c
(δjmδki − δjiδmk)

x̂kx̂m
r̂3

= +ih̄εij`π̂` +
iqMh̄

c

n̂in̂j − δij
r̂

(S.8)

where n̂i
def
= x̂i/r̂. On the bottom line of this formula, the first term is precisely what we

want in eq. (8), but the second term is something we do not want. Fortunately, this second

term is canceled by the commutator of π̂i with the other part of the net angular momentum,

[π̂i, Ĵ
EM
j ] = −qM

c
[π̂i, n̂j ]

= −qM
c
×−ih̄

∂̂nj
∂xi

= +
ih̄qM

c
×
δij − n̂in̂j

r̂
.

(S.9)

Thus altogether,

[π̂i, Ĵ
net
j ] = [π̂i, L̂j ] + [π̂i, Ĵ

EM
j ] = +ih̄εij`π̂` + 0, (S.10)

precisely as in eq. (8).
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Finally, eq. (9) follows from eqs. (7) and (8). Indeed, eq. (7) implies that r̂2 = x̂ix̂i and

hence r̂ commute with the ĵj , and therefore

[ĴEM
i , Ĵj ] = −qM

c

[
x̂i
r̂
, ĵj

]
= −qM

c

1

r̂
[x̂i, ĵj ] = −qM

c

1

r̂
×ih̄εijkx̂k = ih̄εijkĴ

EM
k . (S.11)

At the same time, eqs. (7) and (8) together lead to

[L̂i, ĵj ] = [εik`x̂kπ̂`, ĵj ]

= εik`x̂k ×
(

[π̂`, Ĵj ] = ih̄ε`jmπ̂m

)
+ εik`

(
[x̂k, ĵj ] = ih̄εkjnx̂n

)
× π̂`

= ih̄x̂nπ̂m ×
(
δknεik`ε`jm + δ`mεik`εkjn

) (S.12)

where

δknεik`ε`jm + δ`mεik`εkjn =
(
δijδnm − δimδnj

)
+
(
δmjδni − δjiδmn

)
= δmjδni − δimδnj

= εijkεknm ,

(S.13)

hence

[L̂i, ĵj ] = ih̄x̂nπ̂m × εijkεknm

= ih̄εijk × εknmx̂nπ̂m

= ih̄εijk × L̂k .

(S.14)

Finally, combining eqs. (S.11) and (S.14), we arrive at

[Ĵi, Ĵj ] = [L̂j , Ĵj ] + [ĴEM
i , Ĵj ] = ih̄εijkL̂k + ih̄εijkĴ

EM
k = ih̄εijkĴk , (S.15)

precisely as in eq. (9). Quod erat demonstrandum.
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Part (c):

Eqs. (7–9) imply that the x̂, ~̂π, and Ĵ operators act as vectors under the space rotations

jenerated by the angular momenta Ĵj . Consequently, all the scalar combinations made from

these operators act as scalars under such rotations and therefore commute with the ĵj . In

particular, eq. (7) implies that r̂2 = x̂ix̂i commutes with all the ĵj and hence the r̂ and the 1/r̂

operators also commute with all the ĵj . In the same way, eq. (8) implies that the ~̂π
2

= π̂iπ̂i

operator also commutes with all the ĵj . Thus, both terms in eq. (10) for the Hamiltonian

commute with the angular momenta ĵj , so the whole Hamiltonian also commutes with them,

[Ĥ, ĵj ] = 0. (S.16)

Therefore, in the Heisenberg picture of QM, the angular momentum operators ĵj are time-

independent. In other words, the ĵj are conserved operators.

Part (d):

By definition

Ĵ = x̂× ~̂π + ĴEM = x̂× p̂ − q

c
x̂×A(x̂) − qM

c
n̂ . (S.17)

In this formula

x×A = rn×M ±1− cos θ

r sin θ
eφ = M

±1− cos θ

sin θ

(
n× eφ = −eθ

)
(S.18)

where

eθ = (+ cos θ cosφ,+ cos θ sinφ,− sin θ) (S.19)

is the unit vector in the θ direction. Focusing on the z component Ĵz of the angular momen-

tum, we have

[x×A]z = M
±1− cos θ

sin θ
(+ sin θ) = M (±1− cos θ), (S.20)
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hence [
−q
c
x×A(x) − qM

c
n

]
z

= −Mq

c
(±1− cos θ) − qM

c
cos θ = ∓Mq

c
(S.21)

and therefore

Ĵz = [x̂× p̂]z ∓
Mq

c
. (S.22)

Finally, in the polar coordinate basis, the [x̂× p̂]z operator acts as −ih̄∂/∂φ, thus altogether

Ĵzψ(r, θ, φ) = −ih̄∂ψ
∂φ
∓ Mq

c
× ψ, (S.23)

precisely as in eq. (12).

Part (e):

According to eqs. (S.18) and (S.19),

[x×A]x ±′ i[x×A]y = −M ±1− cos θ

sin θ
cos θ exp(±′iφ) (S.24)

where ± denotes the gauge choice (Northern vs. Southern hemisphere) while ±′ is a separate

sign choice, same on both sides of this equation. Likewise,

nx ±′ iny = sin θ exp(±′iφ), (S.25)

hence[
−q
c

(x×A) − qM

c
n

]
x

±′ i
[
−q
c

(x×A) − qM

c
n

]
y

=

=
qM

c
exp(±′iφ)×

(
(±1− cos θ) cos θ

sin θ
− sin θ

)
=

qM

c
exp(±′iφ)× ± cos θ − 1

sin θ
.

(S.26)

Also, in the spherical coordinates

[x̂× p̂]x ±′ i[x̂× p̂]y = h̄ exp(±′iφ)

(
±′ ∂
∂θ

+ i coth θ
∂

∂φ

)
; (S.27)

you can find this formula in any undergraduate QM textbook. Thus altogether, plugging
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the last two formulae into eq. (S.17) for the net angular momentum, we get

Ĵx ±′ iĴy = h̄ exp(±′iφ)

(
±′ ∂
∂θ

+ i coth θ
∂

∂φ
+
qM

h̄c

± cos θ − 1

sin θ

)
, (S.28)

in perfect agreement with eqs. (13). Quod erat demonstrandum.

Part (f):

Because of the spherical symmetry of the quantum system in question, we expect all the

eigenstates to have wavefucntions of the form

ψ(r, θ, φ) = f(r)× g(θ)× h(φ). (S.29)

Moreover, in light of eq. (12), the states of definite m should have

h(φ) = exp(im′φ) for m′ = m ± qM

h̄c
. (S.30)

Or rather, in the Northern hemisphere gauge

hN (φ) = exp(imNφ) for mN = m +
qM

h̄c
, (S.31)

while in the Southern hemisphere gauge

hS(φ) = exp(imSφ) for mS = m − qM

h̄c
. (S.32)

Both hN and hs must be single-valued functions of the angle φ, so both mN and mS must

be integer. Consequently:

1. qM/h̄c must be integer or half-integer — this is the Dirac’s charge quantiation condi-

tion.

2. For integer qM/h̄c, the eigenvalue m of the Ĵz must be integer, and hence j must also

be integer. But for a half-integer qM/h̄c, the eigenvalue m mst be half-integer, and

hence j must also be half-integer.
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Now consider a multiplet of states |j,m〉 of definite j and all possible m ranging from

−j to +j by 1. In this multiplet, the state with maximal m = +j must be annihilated by

the Ĵ+ operator,

(Ĵx + iĴy) |j,m = j〉 = 0. (S.33)

In polar coordinates, this operator acts as in the top eq. (13), so for a wave function of the

form (S.29) with h(φ) as in eq. (S.30), we have

Ĵ+ψ(r, θ, φ) = h̄ exp(+iφ)f(r)h(φ)×

+
dg

dθ
−
(
m′ = m± qM

h̄c

)
coth θ × g(θ)

− qM

h̄c

1∓ cos θ

sin θ
× g(θ)


= h̄ exp(+iφ)f(r)h(φ)×

(
+
dg

dθ
−
(
m coth θ +

qM

h̄c

1

sin θ

)
× g(θ)

)
.

(S.34)

For the state with m = +j the LHS here must vanish, so the g(θ) function must obey the

differential equation

dg

dθ
=

(
m coth θ +

qM

h̄c

1

sin θ

)
× g. (S.35)

Consequently,

d log g(θ) =
dg

g
=

(
m coth θ +

qM

h̄c

1

sin θ

)
dθ

=

(
m − qM

h̄c

)
× cos θ − 1

2 sin θ
dθ +

(
m +

qM

h̄c

)
× cos θ + 1

2 sin θ
dθ

=

(
m − qM

h̄c

)
×
(
− sin(θ/2)dθ

2 cos(θ/2)
= d log cos(θ/2)

)
+

(
m +

qM

h̄c

)
×
(

cos(θ/2)dθ

2 sin(θ/2)
= d log sin(θ/2)

)
(S.36)

and therefore

g(θ) = const×
(
cos(θ/2)

)n1 ×
(
sin(θ/2)

)n2
for n1,2 = (m = j) ∓ qM

h̄c
. (S.37)

To make this solution regular at both θ = 0 and θ = π, both n1 and n2 must be non-negative
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integers. Consequently, we need

j =

∣∣∣∣qMh̄c
∣∣∣∣ + a non-negative integer, (S.38)

precisely as in eq. (14). Quod erat demonstrandum.

Part (g):

First,

Ĵ2 =

(
L̂ +

qM

c
n̂

)2

= L̂2 +

(
qM

c

)2

+
qM

c

(
n̂ · L̂ + L̂ · n̂

)
= L̂2 +

(
qM

c

)2

(S.39)

because

n̂ · L̂ = L̂ · n̂ = 0. (S.40)

Second,

L̂2 =
(
x̂× ~̂π

)2
= r̂2

(
~̂π

2
− π̂2

r

)
, (S.41)

which obtains exactly as in QM of a particle in a central potential without the magnetic

field. To be safe, I’ll derive this formula for the present case in a momemt. But once we

have this formula, eq. (15) follows immediately from eqs. (S.39) and (S.41).

Now let’s derive eq. (S.41). Classically, it follows from the basic vector algebra:

L2 = (x× ~π)2 = x2 ~π2 − (x · ~π)2 = r2
(
~π2 − (n · ~π)2

)
= r2

(
~π2 − π2

r

)
. (S.42)

But in the quantum mechanics, we have to watch out for the commutators, thus

L̂2 =
(
εijkx̂j π̂k

) (
εi`mx̂`π̂m

)
= x̂j π̂kx̂`p̂m ×

(
εijkεi`m = δj`δkm − δjmδk`

)
= x̂j π̂kx̂j π̂k − x̂j π̂kx̂kπ̂j ,

(S.43)

where

x̂j π̂kx̂j π̂k = x̂j x̂j π̂kπ̂k + x̂j
(
[π̂k, x̂j ] = −ih̄δjk

)
π̂k = r̂2 ~̂π

2
− ih̄x̂j π̂j , (S.44)
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while

x̂j π̂kx̂kπ̂j = [x̂j , π̂k]x̂kπ̂j + π̂kx̂kx̂j π̂j

= [x̂j , π̂k]x̂kπ̂j + [π̂k, x̂k]x̂j π̂j + (x̂kπ̂k)(x̂j π̂j)

= ih̄δjkx̂kπ̂j − ih̄δkkx̂j π̂j + (x̂kπ̂k)
2

= ih̄(x̂ · ~̂π) − 3ih̄(x̂ · ~̂π) + (x̂ · ~̂π)2 = (x̂ · ~̂π)2 − 2ih̄(x̂ · ~̂π).

(S.45)

Altogether, this gives us

L̂2 = r̂2 ~̂π
2
− (x̂ · ~̂π)2 + ih̄(x̂ · ~̂π). (S.46)

Now let’s compare the second and the third terms here to r̂2π̂2
r . First,

π̂r
def
= 1

2

(
n̂iπ̂i + π̂in̂i

)
= n̂iπ̂i + 1

2 [π̂i, n̂i] = n̂iπ̂i + 1
2(−ih̄)

(
∂ni
∂xi

=
2

r

)
= n̂iπ̂i −

ih̄

r̂
.

(S.47)

Second,

r̂2π̂2
r = r̂π̂rr̂π̂r + r̂[r̂, π̂r]π̂r (S.48)

where

[r̂, π̂r] = [r̂, n̂iπ̂i] = n̂i[r̂, π̂i] = n̂i

(
ih̄
∂̂r

∂xi
= ih̄n̂i

)
= ih̄. (S.49)

Consequently,

r̂2π̂2
r = (r̂π̂r)

2 + ih̄(r̂π̂r) = (x̂iπ̂i− ih̄)2 + ih̄(x̂iπ̂i− ih̄) = (x̂iπ̂i)
2 − ih̄(x̂iπ̂i), (S.50)

and comparing this formula to the RHS of eq. (S.46), we immediately see that

L̂2 = r̂2 ~̂π
2
− r̂2π̂2

r , (S.51)

precisely as in eq. (S.41).

This completes our derivation of eq. (S.41) and hence eq. (15)
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Part (h):

In light of eq. (15), the Hamiltonian of the charged particle orbiting a dyon can be written

as

Ĥ =
π̂2
r

2m
+

Ĵ2 − (qM/c)2

2mr̂2
− qQ

r̂
. (S.52)

In the coordinate basis

π̂r = −ih̄
(
∂

∂r
+

1

r

)
, π̂2

r = −h̄2

(
∂2

∂r2
+

2

r

∂

∂r

)
, (S.53)

so the radial wave function f(r) (cf. eq. (S.29)) of a bound state |nr, j,m〉 of energy E < 0

and anjular momentum j obeys the radial Schrödinger equation

h̄2

2m

(
−f ′′(r) − 2

r
f ′(r) +

j(j + 1)− (qM/h̄c)2

r2
f(r)

)
− qQ

r
f(r) = Ef(r). (S.54)

This equation looks exactly like the radial Schrödinger equation for the hydrogen atom —

except for having

λ(λ+ 1)
def
= j(j + 1) − (qM/h̄c)2 (18)

instead of `(`+1) — and it can be solved in exactly the same way. You can find a solution —

and there are many different way to solve eq. (S.54) — in any undergraduate QM textbook;

but since ν is generally non-integral while many textbook solutions make use of ` being an

integer, let me write down a solution of my own.

First, let me introduce a couple of parameters:

κ =
1

h̄

√
−2mE (S.55)

for a bound state of negative energy E < 0, and

ν =
qQm

h̄2κ
. (S.56)

In terms of these parameters (as well as λ), eq. (S.54) becomes

f ′′ +
2

r
× f ′ − λ(λ+ 1)

r2
× f +

2νκ

r
× f = κ2 × f. (S.57)

Now let’s take the asymptotic limits r → ∞ and r → 0. For r → ∞, we may crudely
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approximate eq. (S.57) as

f ′′ ≈ κ2f, (S.58)

so the normalizable solution behaves as f(r) ∼ exp(−κr). In the opposite limit of r → 0,

we approximate eq. (S.57) as

f ′′ +
2

r
× f ′ − λ(λ+ 1)

r2
× f ≈ 0, (S.59)

with the normalizable solution being f ∼ rλ. In light of these asymptotic limits, we let

f(r) = rλ × exp(−κr)× Φ(r) (S.60)

for some (hopefully) regular function Φ(r). Following eq. (S.60), we have

f ′(r) = rλ exp(−κr)×
(

Φ′ +
λ

r
Φ − κΦ

)
, (S.61)

f ′′(r) = rλ exp(−κr)×
(

Φ′′ +

(
2λ

r
− 2κ

)
Φ′ +

(
λ(λ− 1)

r2
− 2λκ

r
+ κ2

)
Φ

)
, (S.62)

and consequently eq. (S.57) becomes

Φ′′ + 2

(
λ+ 1

r
− κ
)
× Φ′ + 2

(ν − λ− 1)κ

r
× Φ. (S.63)

To solve this equation, we rewrite it as

r ×
(

Φ′′ − 2κΦ′
)

+ 2
(

(λ+ 1)Φ′ + (ν − λ− 1)κΦ
)

= 0 (S.64)

and then Laplace transform it to a first-order differential equation. Thus, we look for Φ(r)

in the form of a contour integral in the complex plane,

Φ(r) =

∫
Γ

dt etr × F (t) (S.65)

for some analytic function F (t) and some contour Γ. To allow integration by parts, Γ should

be either a closed contour, or else both ends should extend to ∞ in directions along which

the integrand dies off rapidly enough.
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Given the Laplace transform (S.65) of the Φ function itself, we have

dΦ

dr
=

∫
γ

dt etr × t× F (t), (S.66)

d2Φ

dr2
=

∫
γ

dt etr × t2 × F (t), (S.67)

while

r × Φ(r) =

∫
Γ

dt

(
retr =

∂etr

∂t

)
× F (t)

〈〈 by parts 〉〉 = −
∫
Γ

dt etr × dF

dt
,

(S.68)

and likewise

r ×
(

Φ′′ − 2κΦ′
)

= −
∫
Γ

dt etr × d

dt

(
t2F (t) − 2κtF (t)

)
. (S.69)

Plugging all these formulae into eq. (S.64), we may recast it as an equation for the F (t),

namely

− d

dt

(
(t2 − 2κt)F (t)

)
+ 2

(
(λ+ 1)t + (ν − λ− 1)κ

)
F (t) = 0. (S.70)

This is a fairly easy first-order differential equation. To solve, we rewrite it as

t(t− 2κ)× dF

dt
= 2(λt+ νκ− λκ)× F (t), (S.71)

hence

dF/dt

F
=

2λt+ 2κν − 2κλ

t(t− 2κ)
=

λ− ν
t

+
λ+ ν

t− 2κ
, (S.72)

d logF =
dF

F
= (λ− ν)

dt

t
+ (λ+ ν)

dt

t− 2κ
= (λ− ν)d log(t) + (λ+ ν)d log(t− 2κ), (S.73)
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F (t) = const× tλ−ν × (t− 2κ)λ+ν , (S.74)

and therefore

ψradial = f(r) = const× rλe−κr ×
∫
Γ

dt etr × tλ−ν × (t− 2κ)λ+ν . (S.75)

It remain to determine the integration contour Γ in this formula. For generic λ and ν,

the integrand in eq. (S.75) has two branch cuts, one from t = 0 to t = 2κ and the other

from t = 0 to t = ∞; let’s lay the combined branch cut along the real axis, from t = −∞
to t = +2κ. Since there are no other singularities, the integration contour must therefore

surround this cut, with both running to −∞ on two sides of the cut. Consequently, the

integral in eq. (S.75) becomes

2×
+2κ∫
−∞

dt ert × disc
[
tλ−ν × (t− 2κ)λ+ν

]
(S.76)

where ‘disc’ stands for the discontinuity of [· · ·] across the real axis.

For large r, the exponential ert grows rapidly with t, so the integral (S.76) is dominated

by its right end at t = 2κ, so asymptotically

for r →∞ : theintegral ∼ e+2κr × rsome power (S.77)

and therefore

ψrad(r) ∼ e+κr × rsome power. (S.78)

Such a radial wave function is un-normalizable, so there are no good solutions for generic λ

and ν.

To get a good, normalizable solution of the radial wave equation, we need the integrand

of eq. (S.75) to have a different geometry of singularities that would allow a different kind
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of an integration contour. Such geometry obtains when λ− ν is a negative integer, i.e.

ν = λ + nr, nr = 1, 2, 3, 4, . . . , (S.79)

hence

κ =
mqQ

νh̄2 =
mqQ

(λ+ nr)h̄
2 (S.80)

and the bound state energy

E = − h̄
2κ2

2m
= − m(qQ)2

2h̄2(λ+ nr)2
(S.81)

precisely as in eq. (17). Indeed, for λ− ν = −nr, the integrand

etr × tλ−ν × (t− 2κ)λ+ν (S.82)

has an isolated pole at t = 0 in addition to a branch cut from t = −∞ to t = +2κ. Let’s

reroute the branch cut so it lies away from the pole at t = 0. Then in addition to the

integration contour surrounding the branch cut, we have another option for the contour —

a small circle around the pole around t = 0. For such a contour, the integral extracts the

residue of this pole, hence

ψrad(r) = const× rλe−κr × Residue
@t=0

[
etr × (t− 2κ)2λ+nr

tnr

]
. (S.83)

As a function of r, the residue here is a polynomial of degree nr − 1, so

for r →∞ ψrad ∼ e−κr × rsome power (S.84)

which makes for a normalizable radial wavefunction.
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