
FARADAY’S LAW OF INDUCTION

Back in 1831, Michael Faraday reported a series of experiments on using magnets and

motion to induce an EMF in a circuit and make a current flow through it. Among other

methods, he induced an EMF in a wire coil by means of:

1. Moving the coil towards a magnet or away from a magnet.

2. Keeping the coil stationary while moving the magnet towards the coil or away from it.

3. Keeping the coil stationary near a stationary electromagnet, and varying the current

through the magnet (and hence the magnetic field it makes).

Faraday found that all such methods ofmagnetic induction operate according to the same flux

rule, usually called the Faraday’s Law of Induction: Whenever — and for whatever reason —

the magnetic flux through an electric circuit changes, it induces EMF in the circuit according

to

E = −
dΦ

dt
. (1)

The minus sign in this formula encodes the Lenz rule: The current due to the induced EMF

tries to counteract the change of the flux which has induced the EMF.

But despite the ultimate universality of the Faraday’s Law (1), in the terms of fields

and forces, different methods of magnetic induction work through two rather different mech-

anisms. Faraday’s method#1 — moving the coil — induces the motional EMF, which

ultimately stems from the Lorentz forces

F = qv ×B (2)

on electrons in the moving wires. On the other hand, the other two methods #2 and #3 —

moving the magnet, or varying the current in electromagnet — generate a time-dependent

magnetic field B(x̂, t), which induces a non-potential electric field obeying

∇Einduced = −
∂B

∂t
; (3)

it is this non-potential electric field which gives rise to the EMF induced in the stationary

coil.
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The purpose of these notes is to briefly explain these two mechanisms of magnetic in-

duction.

BTW, despite the apparent difference between the two mechanisms, they are related

to each other by special relativity. In fact, it was Albert Einstein’s investigation of how

Faraday’s methods 1 and 2 induce exactly the same EMF for the same relative motion of

the coil and the magnet which lead him to the special relativity theory in the first place!

Motional EMF

Let ’s start with the physical origin of the motional EMF — the EMF due to moving

a wire across the magnetic field. Consider a wire moving across the magnetic fields, for

example

R vB

+

−

I (4)

The wire’s velocity adds to the velocities of the conducting electrons relative to the wire,

v = vwire + vrel (5)

hence the magnetic Lorenz force on an electron is

F = (−e)vwire ×B + (−e)vrel ×B. (6)

When we sum these forces over the conducting electrons, the terms due to vrel add up to

the net mechanical force on the wire,

Fmech =
∑

(−e)vrel ×B = (−e)Nevdrift ×B = IL×B . (7)

On the other hand, the forces (−e)vwire ×B make the electrons move along the wire in the

direction of −vwire×B, which makes the current flow in the opposite direction of +vwire×B.
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For example, in the red moving wire on the diagram (4), the force pushes the electrons down,

so the current flows up. The electromotive “force” generating this current obtains as the

work of the magnetic force per unit of charge; for each electron moving all the way from one

end of the wire to the other end, the work is

W = L ·
(

F = (−e)vwire ×B
)

, (8)

hence EMF

E =
W

(−e)
= L · (vw ×B) (9)

where L is the vector length of the wire. Equation (9) can be easily generalized to curved

wires moving in complicated ways through non-uniform magnetic fields,

E =

∫

wire

(

vwire(x̂)×B(x̂)
)

· dx̂ . (10)

Note: we do not have to wait until a specific electron moves all the way from one end

of the wire to the other end. The same work per unit of charge flowing through the wire

obtains when the electron gas in the wire collectively moves just a tiny distance along the

wire; indeed, such a collective motion is mathematically equivalent to to a small fluid element

of the electron gas moving the whole distance while the rest of the gas stays in place.

Relation to the Flux Rule

Formula (10) for the motional EMF has a rather obscure relation to the Faraday’s flux

rule. To clarify this relation, we need to take care of the exact meaning of the “magnetic flux

through an electric circuit”. First of all, this flux goes through the complete closed circuit

through which the current is flowing, including both the moving and the non-moving wires.
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In terms of the time-dependent closed loop L(t) spanned by this circuit, eq. (10) for the

motional EMF becomes

Emotion(t) =

∮

L(t)

[vwire(x̂, t)×B(x̂, t)] · dx̂. (11)

To define the magnetic flux through such a time-dependent circuit loop L(t), we need to

span it with some time-dependent surface S(t), then

Φ[through L(t)] =

∫∫

S(t)

B(x̂, t) · d2area. (12)

Since the B field is divergence-less at all times, the exact geometry of the surface S(t) does

not matter, as long as it spans the circuit loop L(t) at all times t.

Now consider the time dependence of the magnetic flux (12). In general, the magnetic

field B(x̂, t) is time-dependent, and the surface S(t) over which we integrate is also time-

dependent. Hence, when we take the time derivative of the flux, we get two terms

dΦ

dt
=

∫∫

∂S/∂t

B · d2area +

∫∫

S

∂B

∂t
· d2area. (13)

Theorem: the first term here equals (minus) the motional EMF (11) in the moving circuit,

−

∫∫

∂S/∂t

B · d2area = Emotion =

∮

L

[vwire(x̂)×B(x̂)] · dx̂. (14)

While proving this theorem, we shall assume a time-independent magnetic field, so the first

term in eq. (13) becomes the entire dΦ/dt. We shall take care of the time-dependent fields

— and hence the second term in eq. (13) later in these notes.

Proof: Consider two successive snapshot pictures of the moving circuit loop L(t), the L1 at

time t1 and the L2 at a later time t2. Let S1 be some surface spanning the L1 while ∆S is
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a ribbon-shaped surface connecting the two loops as shown on the picture below

L1

L2

S1

∆S

(15)

The combined surface S2 = S1 +∆S spans the loop L2; it might look like a peculiar choice

of a surface to span the loop L2 at time t2, but it does the job. Consequently, the magnetic

flux at time t2 can be calculated using this surface, thus

Φ(t2) =

∫∫

S1+∆S

B·d2area =

∫∫

S1

B·d2area +

∫∫

∆S

B·d2area = Φ(t1) +

∫∫

∆S

B·d2area . (16)

Therefore, the change of the magnetic flux through a moving loop can be expressed as the

integral over the ribbon ∆S,

∆Φ = Φ(t2) − Φ(t1) =

∫∫

∆S

B · d2area . (17)

Let’s focus on very short time intervals δt = t2 − t1 → 0, so the loops L1 and L2 are

very close to each other. As each infinitesimal piece d~ℓ of wire moves from its old place in

L1 to its new place in L2 with velocity v, it sweeps through area

d~ℓ

d~ℓ

~vδt
~vδt d2area = ~vδt× d~ℓ . (18)
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As to the whole moving loop L(t), it sweeps through a very narrow ribbon

d~ℓ

d~ℓ

~vδt
~vδt

(19)

which we may identify as ∆S. The vector area of this ribbon is

a =

∮

L

vδt× d~ℓ (20)

where the velocity vector v may vary along the loop, depending on how the wires are moving.

The magnetic flux through the ribbon ∆S follows from the infinitesimal areas (18):

∫∫

∆S

B · d2area =

∮

L

B · (vδt× d~ℓ) = −δt×

∮

L

(v ×B) · d~ℓ , (21)

where the second equality follows from the vector identity

B · (v × d~ℓ) = d~ℓ · (B× v) = −(v ×B) · d~ℓ . (22)

But as we saw earlier in eq. (17), the magnetic flux through the ribbon ∆S is precisely the

change of the magnetic flux through the moving loop L between times t1 and t2 = t1 + δt.

Consequently, the rate of change of the magnetic flux through the moving loop obtains from

eq. (21) as

dΦ

dt
= −

∮

L

(v ×B) · d~ℓ . (23)

At this point, the RHS of eq. (23) is precisely the (minus) motional EMF (11). At the

same time, we have calculated the magnetic flux and its rate of change assuming a time-

independent magnetic field, so the dΦ/dt on the LHS is merely the first term in eq. (13)
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for the total time derivative of the magnetic flux. Thus, in a more general context eq. (23)

becomes

Emotion = −

[

dΦ

dt

]

motion

= −

∫∫

∂S/∂t

B · d2area. (14)

Quod erat demonstrandum.

The Induced Electric Field

Let’s go back to the complete Faraday’s Law of Induction

Enet = −
dΦ

dt
(24)

but now allow for a time-dependent magnetic field. In this case,

−
dΦ

dt
= −

∫∫

∂S/∂t

B · d2area −

∫∫

S

∂B

∂t
· d2area. (13)

where the first term on the RHS is the motional EMF, hence

Enet = Emotion + Evar.b (25)

where

Evar.B = −

∫∫

S

∂B(x̂, t)

∂t
· d2area (26)

is the extra EMF due to time-dependence of the magnetic field.

Physically, this extra EMF stems from the electric field induced by the ∂B/∂t. Unlike

the electrostatic field, the induced electric field is non-conservative (or rather, the force

F = qEinduced is non-conservative), so it has non-zero line integrals along closed loops,

∮

Estatic · d~ℓ = 0 but

∮

Einduced · d~ℓ 6= 0. (27)

Indeed, it’s the non-zero work of the induced electric field pushing the electrons around some
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wire loop L which provides the EMF in a time-dependent magnetic field, thus

∮

L

Einduced · d~ℓ = Evar.B = −

∫∫

S

∂B(x̂, t)

∂t
· d2area . (28)

This is the global form of the Ampere-like law for the induced electric field. The local form

of this Law follows from the Stokes’ theorem:

−

∫∫

S

∂B(x̂, t)

∂t
· d2area =

∮

L

Einduced · d~ℓ =

∫∫

S

(∇× Einduced) · d
2area, (29)

hence the Induction Law for the fields:

∇×Einduced = −
∂B

∂t
. (30)

In general, when both the charges and the currents — and hence also the magnetic

field — are time-dependent, there is no clear separation between the static and the induced

electric fields. Instead, there is only the combined electric field

E(x̂, t) = Estatic(x̂, t) + Einduced(x̂, t) (31)

which obeys the Induction Law

∇× E(x̂, t) = −
∂

∂t
B(x̂, t) (32)

as well as the Gauss Law

ǫ0∇ · E(x̂, t) =

{

ρ(x̂, t) (microscopic), or

ρfree(x̂, t) − ∇ ·P(x̂, t) (macroscopic).
(33)

Note: The induction law formula (32) works exactly as written for both microscopic fields

fields and for the macroscopic fields.
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The Potentials

Since the dynamical electric field has non-zero curl (32), it is cannot be written as (minus)

gradient of some potential, E 6= −∇φ. Instead, we can write it as

E(x̂, t) = −∇φ(x̂, t) −
∂

∂t
A(x̂, t) (34)

where A(x̂, t) is the vector potential for the magnetic field,

B(x̂, t) = ∇×A(x̂, t). (35)

To see how this works, let’s start with the time-dependent vector potential A(x̂, t). Since

nobody have ever seen a magnetic monopole, the magnetic Gauss law calls for zero divergence

of the magnetic field, ∇ ·B ≡ 0, everywhere and everywhen, regardless if the magnetic field

is static or time-dependent. Consequently, for each moment of time t, the general solution

of the zero-divergence equation is the curl of some vector potential A(x̂). Combining such

solutions for all times t, we get a time-dependent vector potential A(x̂, t) whose curl at any

time t is the magnetic field A(x, t) at that time, thus eq. (35).

Next, given some vector potential A(, x̂, t) for the magnetic field, let’s plug eq. (35) into

the Induction Law (32) for the electric field:

∇× E = −
∂B

∂t
= −

∂

∂t

(

∇×A
)

, (36)

and since the space derivatives commute with the time derivative,

∇×E = −∇×

(

∂A

∂t

)

. (37)

Consequently, the combination

E(x̂, t) +
∂A(x̂, t)

∂t
(38)

has zero curl,

∇×

(

E +
∂A

∂t

)

= 0, for all x̂ and all t. (39)

Therefore, it is this curl-less combination rather than the electric field itself which should be

(minus) gradient of a scalar potential φ(x̂), or rather φ(x̂, t) to allow for the time-dependent
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fields. Thus,

E(x̂, t) +
∂A

∂t
= −∇φ(x̂, t) (40)

and hence

E(x̂, t) = −∇φ(x̂, t) −
∂

∂t
A(x̂, t). (34)

Similar to the static case, the vector potential A(x̂, t) and the scalar potential φ(x̂, t)

are not unique. Statically, the vector potential for a given magnetic field is determined up

to a gauge transform

A′(x̂) = A(x̂) + ∇Λ(x̂) =⇒ ∇×A′(x̂) = ∇×A(x̂), (41)

for an arbitrary Λ(x̂). For the time-dependent magnetic fields, we may also use time-

dependent gauge transforms with arbitrary Λ(x̂, t). However, in order to preserve the electric

field (34) as well as the magnetic field, a time-dependent gauge transform also shifts the scalar

potential by a time derivative of Λ,

A′(x̂, t) = A(x̂, t) + ∇Λ(x̂, t),

φ′(x̂, t) = φ(x̂, t) −
∂Λ(x̂, t)

∂t
,

B′(x̂, t) = B(x̂, t),

E′(x̂, t) = E(x̂, t).

(42)

Indeed, for the electric field we have

E′ = −∇φ′ −
∂A′

∂t
= −∇φ + ∇

∂Λ

∂t
−

∂A

∂t
−

∂

∂t
(∇Λ) = −∇φ −

∂A

∂t
= E. (43)

Note that all physical quantities are invariant under such gauge transforms. For some con-

voluted calculations, this is a powerful cross-check of the final results: if they are not gauge

invariant, you must have made a mistake somewhere!

In other situations, it’s convenient to eliminate the potentials’ redundancy by fixing a

gauge condition, that is, imposing an extra linear condition on the A and φ (one equation

for each (x1, x2, x3, t)) to make the potentials unique. A commonly used condition is the
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transverse gauge ∇ ·A(x̂, t) ≡ 0, also called the Coulomb gauge because in this gauge the

scalar potential φ(x̂, t) is simply the Coulomb potential due to ρ(ŷ, t) at the same time t.

Indeed, in the transverse gauge

∇ · E = −∇2φ −
∂

∂t
(∇ ·A) = −∇2φ, (44)

hence by the Gauss Law

∇2φ(x̂, t) = −
1

ǫ0
ρ(x̂, t), (45)

which is a differential equation in space but not in time, so its solution is the instantaneous

Coulomb potential

φ(x̂, t) =
1

4πǫ0

∫∫∫

ρ(ŷ, t)

|x̂− ŷ|
d3ŷ. (46)

Another common condition is the Lorentz-invariant Landau gauge

∇ ·A + µ0ǫ0
∂φ

∂t
= 0 (47)

in which both the scalar and the vector potentials obey similar wave equations,

(

1

c2
∂2

∂t2
− ∇2

)

φ(x̂, t) =
1

ǫ0
ρ(x̂, t), (48)

(

1

c2
∂2

∂t2
− ∇2

)

A(x̂, t) = µ0 J(x̂, t), (49)

1

c2
= µ0ǫ0 . (50)

I shall derive these equations later in class; for the impatient, here are my notes on Maxwell

equations and related issues.
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